CA6608: MODERN STRUCTURAL ENGINEERING

Effective Term

Semester B 2024/25

Part I Course Overview

Course Title

Modern Structural Engineering

Subject Code

CA - Civil and Architectural Engineering

Course Number

6608

Academic Unit

Architecture and Civil Engineering (CA)

College/School

College of Engineering (EG)

Course Duration

One Semester

Credit Units

3

Level

P5, P6 - Postgraduate Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

BC6608 Advanced Structural Engineering

Exclusive Courses

Nil

Part II Course Details

Abstract

CA6608: Modern Structural Engineering

The course aims at introducing modern technologies for structural engineering and their applications. The course focuses on the state-of-the-art theory, analysis and design of structural members and systems with the help of the computer applications.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if DEC-A1 app.)	DEC-A2	DEC-A3
1	Apply advanced techniques for structural analysis and design	35	X	
2	Apply computer applications for structural analysis and design	25	X	
3	Apply the state-of-the art design code for the design of steel structures	40	X	

A1: Attitude

2

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Theory, concepts and problem solving	1, 2, 3	
2	Hands-on	Computer-aided structural analysis and design	2	
3	Tutorial	Design of structures	3	

Additional Information for LTAs

Semester Hours: 3 hours per week

Lecture/Tutorial/Laboratory Mix: Lecture (2); Tutorial (0); Laboratory (1)

Tutorial/Laboratory 1 hour per week

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Assignments	1, 3	10	
2	Mid-term test	1, 3	30	
3	Individual project	2	10	

Continuous Assessment (%)

Examination (%)

50

Examination Duration (Hours)

2

Additional Information for ATs

To pass a course, a student must obtain minimum marks of 30% in both coursework and examination components, and an overall mark of at least 40%

Assessment Rubrics (AR)

Assessment Task

Assignments (Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

- CAPACITY for SELF-DIRECTED LEARNING to understand the principles of modern structural engineering
- CAPACITY for structural analysis and design

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Mid-term test (Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

- CAPACITY for SELF-DIRECTED LEARNING to understand the principles of plates and shells
- CAPACITY for structural analysis and design

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

- 4 CA6608: Modern Structural Engineering
- (F) Not even reaching marginal levels

Assessment Task

Individual project (Applicable to students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

CAPACITY for structural analysis and design using computer application

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Examination (for students admitted before Semester A 2022/23 and in Semester A 2024/25 & thereafter)

Criterion

- ABILITY to UNDERSTAND the taught methodology and procedures in using the modelling and calculation techniques
- ABILITY to APPLY the scientific techniques in solving theoretical and application problems in structural engineering

Excellent

(A+, A, A-) High

Good

(B+, B, B-) Significant

Fair

(C+, C, C-) Moderate

Marginal

(D) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Assignments (Applicable to students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

- CAPACITY for SELF-DIRECTED LEARNING to understand the principles of modern structural engineering

5

- CAPACITY for structural analysis and design

Excellent

(A+, A, A-) High

Good

(B+, B) Significant

Marginal

(B-, C+, C) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Mid-term test (Applicable to students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

- CAPACITY for SELF-DIRECTED LEARNING to understand the principles of plates and shells
- CAPACITY for structural analysis and design

Excellent

(A+, A, A-) High

Good

(B+, B) Significant

Marginal

(B-, C+, C) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Individual project (for students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

CAPACITY for structural analysis and design using computer application

Excellent

(A+, A, A-) High

Good

(B+, B,) Significant

Marginal

(B-, C+, C) Basic

Failure

(F) Not even reaching marginal levels

Assessment Task

Examination (for students admitted from Semester A 2022/23 to Summer Term 2024)

Criterion

- ABILITY to UNDERSTAND the taught methodology and procedures in using the modelling and calculation techniques
- ABILITY to APPLY the scientific techniques in solving theoretical and application problems in structural engineering

Excellent

(A+, A, A-) High

Good

(B+, B,) Significant

Marginal

(B-, C+, C) Basic

Failure

(F) Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Advanced structural analysis; Computer-aided structural analysis and design; Column buckling; Lateral torsional buckling; Shear buckling of web; Web bearing and buckling due to transverse force; Design of steel structures.

Reading List

Compulsory Readings

	Title
1	BSi, BS EN 1993-1-1: 2005, Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings.
2	BSi, BS EN 1993-1-5: 2006, Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements.

Additional Readings

	Title
1	J.N. Reddy, An Introduction to the Finite Element Method, 3rd edition, McGraw-Hill, 2006.
2	Devdas Menon, 2009, Advanced Structural Analysis, Morgan & Claypool.
3	Buildings Department, 2011, Code of Practice for the Structural Use of Steel, download at: http://www.bd.gov.hk/english/documents/code/SUOS2011.pdf
4	Buildings Department, 2011, Code of Practice for Dead and Imposed Loads 2011.