百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站


 [   ] 

Prof. NOLIN Pierre

PhD – Université Paris-Sud 11 & école Normale Supérieure

Associate Professor

Contact Information

Office: Y5126 Academic 1
Phone: +852 3442-8569
Fax: +852 3442-0250
Email: bpmnolin@cityu.edu.hk

Research Interests

  • Probability Theory
  • Stochastic Processes
  • Statistical Mechanics
Dr. Pierre Nolin received his PhD from Université Paris-Sud 11 and École Normale Supérieure, France, in 2008. Before joining City University in 2017, he worked as an instructor and PIRE fellow at the Courant Institute of Mathematical Sciences, New York University, USA, from 2008 to 2011, and then as an assistant professor in the Department of Mathematics at ETH Zürich, Switzerland, from 2011 to 2017.

Dr. Pierre Nolin's research is focused on probability theory and stochastic processes, in connection with questions originating from statistical mechanics. He is particularly interested in lattice models such as the Ising model of ferromagnetism, Bernoulli percolation, Fortuin-Kasteleyn percolation, frozen percolation, and forest fire processes.


Awards and Achievements

  • 2008 “Prix de thèse Jacques Neveu” Société de Mathématiques Appliquées et Industrielles (Modélisation Aléatoire et Statistique).


Publications Show All Publications Show Prominent Publications


Journal

  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2025). Backbone exponent and annulus crossing probability for planar percolation. Physical Review Letters. 134. 117101 .
  • Gao, Y. , Nolin, P. & Qian, W. (2025). Up-to-constants estimates on four-arm events for simple conformal loop ensemble. arXiv:2504.06202. 36 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two I. Arm events in the random walk loop soup. arXiv:2409.16230. 50 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets. arXiv:2409.16273. 71 pp.
  • van den Berg, J. & Nolin, P. (2024). Two-dimensional forest fires with boundary ignitions. arXiv:2407.13652. 23 pp.
  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2023). Backbone exponent for two-dimensional percolation. arXiv:2309.05050. 63 pp.
  • Nolin, P. , Tassion, V. & Teixeira, A. (2023). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 25. 4841 - 4868.
  • van den Berg, J. & Nolin, P. (2022). A 2D forest fire process beyond the critical time. arXiv:2210.05642. 53 pp.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181. 211 - 290.
  • Lam, W. K. & Nolin, P. (2021). Near-critical avalanches in 2D frozen percolation and forest fires. arXiv:2106.10183. 72 pp.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l'école Normale Supérieure. 51. 1017 - 1084.
  • van den Berg, J. & Nolin, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electronic Communications in Probability. 22 (no. 65). 1 - 15.
  • van den Berg, J. & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Annals of Applied Probability. 27. 91 - 108.
  • Hilário, M. , de Lima, B. , Nolin, P. & Sidoravicius, V. (2014). Embedding binary sequences into Bernoulli site percolation on Z^3. Stochastic Processes and their Applications. 124. 4171 - 4181.
  • Ménard, L. & Nolin, P. (2014). Percolation on uniform infinite planar maps. Electronic Journal of Probability. 19 (no. 78). 1 - 27.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2012). A percolation process on the binary tree where large finite clusters are frozen. Electronic Communications in Probability. 17 (no. 2). 1 - 11.
  • van den Berg, J. , de Lima, B. & Nolin, P. (2012). A percolation process on the square lattice where large finite clusters are frozen. Random Structures & Algorithms. 40. 220 - 226.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39. 1286 - 1304.
  • Duminil-Copin, H. , Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64. 1165 - 1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22. 797 - 819.
  • Chayes, L. & Nolin, P. (2009). Large scale properties of the IIIC for 2D percolation. Stochastic Processes and their Applications. 119. 882 - 896.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36. 1748 - 1776.
  • Nolin, P. (2008). Near-critical percolation in two dimensions. Electronic Journal of Probability. 13 (no. 55). 1562 - 1623.

Book Chapter

  • van den Berg, J. & Nolin, P. (2021). On the four-arm exponent for 2D percolation at criticality. In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. (pp. 125 - 145). Birkh?user, Cham.


Last update date : 11 Apr 2025
吉安市| 夹江县| 金赞百家乐官网的玩法技巧和规则 | 百家乐视频聊天软件| 全讯网论坛| 南宫市| 百家乐牡丹娱乐城| 百家乐官网小钱赢钱| 大发888备用网址大全| 破战百家乐的玩法技巧和规则| 百家乐官网赌场论坛在线| 德州扑克葫芦| 凯旋门百家乐游戏| 冠军百家乐官网现金网| 威尼斯人娱乐城最新网址| 雅加达百家乐官网的玩法技巧和规则| zaixian百家乐| 百家乐押注最多是多少| 百家乐官网推锅| 百家乐外挂| 威尼斯人娱乐网反| E世博开户| 百家乐官网开闲的几率多大| 百家乐官网网站出售| 免费百家乐计划工具| 百家乐官网怎么| 国外合法赌博网站| 中国百家乐的玩法技巧和规则| 百家乐试玩网站| 百家乐官网珠盘路| tt线上娱乐| 百家乐官网网站制作| 百家乐官网下注口诀| 娱乐城免费送彩金| 挖掘百家乐赢钱秘籍| 名人百家乐官网的玩法技巧和规则 | 百家乐官网全透明牌靴| 老虎机价格| 百家乐园百利宫娱乐城怎么样百家乐园百利宫娱乐城如何 | 百家乐玩法有技巧| 博彩百家乐官网画谜网|