百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站


 [   ] 

Prof. NOLIN Pierre

PhD – Université Paris-Sud 11 & école Normale Supérieure

Associate Professor

Contact Information

Office: Y5126 Academic 1
Phone: +852 3442-8569
Fax: +852 3442-0250
Email: bpmnolin@cityu.edu.hk

Research Interests

  • Probability Theory
  • Stochastic Processes
  • Statistical Mechanics
Dr. Pierre Nolin received his PhD from Université Paris-Sud 11 and École Normale Supérieure, France, in 2008. Before joining City University in 2017, he worked as an instructor and PIRE fellow at the Courant Institute of Mathematical Sciences, New York University, USA, from 2008 to 2011, and then as an assistant professor in the Department of Mathematics at ETH Zürich, Switzerland, from 2011 to 2017.

Dr. Pierre Nolin's research is focused on probability theory and stochastic processes, in connection with questions originating from statistical mechanics. He is particularly interested in lattice models such as the Ising model of ferromagnetism, Bernoulli percolation, Fortuin-Kasteleyn percolation, frozen percolation, and forest fire processes.


Awards and Achievements

  • 2008 “Prix de thèse Jacques Neveu” Société de Mathématiques Appliquées et Industrielles (Modélisation Aléatoire et Statistique).


Publications Show All Publications Show Prominent Publications


Journal

  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2025). Backbone exponent and annulus crossing probability for planar percolation. Physical Review Letters. 134. 117101 .
  • Gao, Y. , Nolin, P. & Qian, W. (2025). Up-to-constants estimates on four-arm events for simple conformal loop ensemble. arXiv:2504.06202. 36 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two I. Arm events in the random walk loop soup. arXiv:2409.16230. 50 pp.
  • Gao, Y. , Nolin, P. & Qian, W. (2024). Percolation of discrete GFF in dimension two II. Connectivity properties of two-sided level sets. arXiv:2409.16273. 71 pp.
  • van den Berg, J. & Nolin, P. (2024). Two-dimensional forest fires with boundary ignitions. arXiv:2407.13652. 23 pp.
  • Nolin, P. , Qian, W. , Sun, X. & Zhuang, Z. (2023). Backbone exponent for two-dimensional percolation. arXiv:2309.05050. 63 pp.
  • Nolin, P. , Tassion, V. & Teixeira, A. (2023). No exceptional words for Bernoulli percolation. Journal of the European Mathematical Society. 25. 4841 - 4868.
  • van den Berg, J. & Nolin, P. (2022). A 2D forest fire process beyond the critical time. arXiv:2210.05642. 53 pp.
  • van den Berg, J. & Nolin, P. (2021). Near-critical 2D percolation with heavy-tailed impurities, forest fires and frozen percolation. Probability Theory and Related Fields. 181. 211 - 290.
  • Lam, W. K. & Nolin, P. (2021). Near-critical avalanches in 2D frozen percolation and forest fires. arXiv:2106.10183. 72 pp.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2018). Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales Scientifiques de l'école Normale Supérieure. 51. 1017 - 1084.
  • van den Berg, J. & Nolin, P. (2017). Boundary rules and breaking of self-organized criticality in 2D frozen percolation. Electronic Communications in Probability. 22 (no. 65). 1 - 15.
  • van den Berg, J. & Nolin, P. (2017). Two-dimensional volume-frozen percolation: exceptional scales. Annals of Applied Probability. 27. 91 - 108.
  • Hilário, M. , de Lima, B. , Nolin, P. & Sidoravicius, V. (2014). Embedding binary sequences into Bernoulli site percolation on Z^3. Stochastic Processes and their Applications. 124. 4171 - 4181.
  • Ménard, L. & Nolin, P. (2014). Percolation on uniform infinite planar maps. Electronic Journal of Probability. 19 (no. 78). 1 - 27.
  • van den Berg, J. , Kiss, D. & Nolin, P. (2012). A percolation process on the binary tree where large finite clusters are frozen. Electronic Communications in Probability. 17 (no. 2). 1 - 11.
  • van den Berg, J. , de Lima, B. & Nolin, P. (2012). A percolation process on the square lattice where large finite clusters are frozen. Random Structures & Algorithms. 40. 220 - 226.
  • Beffara, V. & Nolin, P. (2011). On monochromatic arm exponents for 2D critical percolation. Annals of Probability. 39. 1286 - 1304.
  • Duminil-Copin, H. , Hongler, C. & Nolin, P. (2011). Connection probabilities and RSW-type bounds for the two-dimensional FK Ising model. Communications on Pure and Applied Mathematics. 64. 1165 - 1198.
  • Nolin, P. & Werner, W. (2009). Asymmetry of near-critical percolation interfaces. Journal of the American Mathematical Society. 22. 797 - 819.
  • Chayes, L. & Nolin, P. (2009). Large scale properties of the IIIC for 2D percolation. Stochastic Processes and their Applications. 119. 882 - 896.
  • Nolin, P. (2008). Critical exponents of planar gradient percolation. Annals of Probability. 36. 1748 - 1776.
  • Nolin, P. (2008). Near-critical percolation in two dimensions. Electronic Journal of Probability. 13 (no. 55). 1562 - 1623.

Book Chapter

  • van den Berg, J. & Nolin, P. (2021). On the four-arm exponent for 2D percolation at criticality. In and Out of Equilibrium 3: Celebrating Vladas Sidoravicius. Progress in Probability, vol 77. (pp. 125 - 145). Birkh?user, Cham.


Last update date : 11 Apr 2025
蓝盾国际| 百家乐官网波音平台开户导航| 立博开户| 百家乐官网破解赌戏玩| 大世界百家乐官网娱乐场| 赌王百家乐的玩法技巧和规则| 百家乐官网赢家| 娱乐城开户彩金| 马牌百家乐官网娱乐城| 24山风水| 六合彩下注| 百家乐闲拉长龙| 百家乐官网群柏拉图软件| 威尼斯人娱乐场 五星| 天博百家乐官网娱乐城| 绥滨县| 大发888官方zhuce| 百家乐官网怎么玩才会赢钱| 百家乐龙虎斗| ag百家乐官网下载| 同乐城| 玩百家乐请高手指点| 2024地运朝向房子| 有百家乐官网的棋牌游戏| 南涧| 香港六合彩总公司| 网上的百家乐怎么才能| 百家乐庄闲的比例| 波音百家乐官网现金网| 嘉年华百家乐的玩法技巧和规则| 百家乐游戏规则玩法| 大发888网页| 8运24山风水图解| 博彩百家乐官网画谜网| 百家乐官网信誉平台现金投注| 百家乐官网打法分析| 大发888优惠码| 百家乐娱乐城| 百家乐纯技巧打| 百家乐官网赢率| 高额德州扑克视频|