百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Eng · 繁體 · 簡體

 [   ] 

Prof. CHADA Neil Kumar

PhD (University of Warwick)

Assistant Professor

Contact Information

Office: Y6527 YEUNG
Phone: 34429819
Fax: 34420250
Email: nkchada@cityu.edu.hk
Web: website

Research Interests

  • Computational Statistics
  • Monte Carlo Methods
  • Inverse Problems
  • Data Assimilation
Prof. Neil Chada received his master degree from University of Warwick, in 2014. He obtained his PhD in 2018 from the University of Warwick. From 2018 to 2020, he was a postdoctoral research fellow at the National University of Singapore. He then moved to the KAUST as a research fellow from 2020-2022. Before joining City University of Hong Kong in 2024, he worked as an assistant professor at Heriot Watt University.


Prof. Neil Chada's research is focused on the design of Monte Carlo methods within the interface of applied mathematics and computational statistics. Further details are available on his personal webpage https://sites.google.com/view/neilc/home.



Service in CityUHK


Administrative Assignment

  • 2024 - 2025, MA Representative for CS Programme Committees, Department representative.


Recent Publications

    • Paulin D.; Whalley P. A.; Chada N K.; Leimkuhler B. Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics. (2025), International Conference on Artificial Intelligence and Statistics (AISTATS), (accepted).
    • Nong Minh H.; Houssineau J.; Chada N K.; Delande E. Decoupling Epistemic and Aleatoric Uncertainties with Possibility Theory. (2025), International Conference on Artificial Intelligence and Statistics (AISTATS), (accepted).
    • Bergou E.; Chada N. K.; Diouane Y. A Stochastic Iteratively Regularized Gauss-Newton Method. (2025), Inverse Problems, 41 (015005).
    • Chada N. K.; Lang Q.; Lu F.; Wang X. A Data-Adaptive RKHS Prior for Bayesian Learning of Kernels in Operators. (2024), Journal of Machine Learning Research, 25, 1-37.
    • Weissmann S.; Chada N. K.; Tong X T. The Ensemble Kalman Filter for Dynamic Inverse Problems. (2025), Information and Inference: A Journal of the IMA, 18(4).


Last update date : 24 Jan 2025
百家乐官网赌博大揭密| 金沙县| 澳门百家乐官网公试打法| 六合彩历史开奖记录| 大发888娱乐城送白菜| 大发888娱乐场怎么才能赢到钱| 至尊百家乐赌场娱乐网规则 | 大发888网络赌博害人| 大发888总结经验| 博王娱乐| 大发888合营商| tt娱乐城网站| k7娱乐城开户| 网上博彩网址| 百家乐官网连黑记录| 大发888注册送| 棋牌新教室| 百家乐官网如何写路| 百家乐官网一黑到底| 百家乐视频台球下载| 威尼斯人娱乐网上百家乐的玩法技巧和规则| 金宝博网站| ez百家乐官网技巧| 百家乐官网免费注册| 现金百家乐代理| 百家乐网络游戏平台| 百家乐投注网站是多少| 百家乐网上真钱娱乐| 棋牌游戏平台排名| 真人百家乐官网网西陆| 百家乐官网的路图片| 百家乐翻天快播粤语| 丰禾娱乐城开户| 百家乐官网园云鼎娱乐平台| 百家乐官网网站东方果博| 百家乐麻将筹码币镭射贴膜| 新竹县| 大发888老虎机下载免费| 帝王百家乐全讯网2| 大发888娱乐城 17| 威尼斯人娱乐平台注册网址|