百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Eng · 繁體 · 簡體

 [   ] 

Prof. CHADA Neil Kumar

PhD (University of Warwick)

Assistant Professor

Contact Information

Office: Y6527 YEUNG
Phone: 34429819
Fax: 34420250
Email: nkchada@cityu.edu.hk
Web: website

Research Interests

  • Computational Statistics
  • Monte Carlo Methods
  • Inverse Problems
  • Data Assimilation
Prof. Neil Chada received his master degree from University of Warwick, in 2014. He obtained his PhD in 2018 from the University of Warwick. From 2018 to 2020, he was a postdoctoral research fellow at the National University of Singapore. He then moved to the KAUST as a research fellow from 2020-2022. Before joining City University of Hong Kong in 2024, he worked as an assistant professor at Heriot Watt University.


Prof. Neil Chada's research is focused on the design of Monte Carlo methods within the interface of applied mathematics and computational statistics. Further details are available on his personal webpage https://sites.google.com/view/neilc/home.



Service in CityUHK


Administrative Assignment

  • 2024 - 2025, MA Representative for CS Programme Committees, Department representative.


Recent Publications

    • Paulin D.; Whalley P. A.; Chada N K.; Leimkuhler B. Sampling from Bayesian Neural Network Posteriors with Symmetric Minibatch Splitting Langevin Dynamics. (2025), International Conference on Artificial Intelligence and Statistics (AISTATS), (accepted).
    • Nong Minh H.; Houssineau J.; Chada N K.; Delande E. Decoupling Epistemic and Aleatoric Uncertainties with Possibility Theory. (2025), International Conference on Artificial Intelligence and Statistics (AISTATS), (accepted).
    • Bergou E.; Chada N. K.; Diouane Y. A Stochastic Iteratively Regularized Gauss-Newton Method. (2025), Inverse Problems, 41 (015005).
    • Chada N. K.; Lang Q.; Lu F.; Wang X. A Data-Adaptive RKHS Prior for Bayesian Learning of Kernels in Operators. (2024), Journal of Machine Learning Research, 25, 1-37.
    • Weissmann S.; Chada N. K.; Tong X T. The Ensemble Kalman Filter for Dynamic Inverse Problems. (2025), Information and Inference: A Journal of the IMA, 18(4).


Last update date : 24 Jan 2025
百家乐局部| 足球百家乐投注| 百家乐官网游戏打水| 大发888娱乐城存款| 百家乐官网娱乐网代理佣金| 百家乐群详解包杀| 大发888开户注册网站| 百家乐官网高手论| 永发国际娱乐城| 全讯网历史回顾| 百家乐官网丽| 百家乐官网规则好学吗| 百家乐波音平台路单| 网上百家乐官网投注法| 百家乐最好的平台是哪个| 利来娱乐网| 至尊百家乐娱乐| 中华百家乐官网的玩法技巧和规则 | 百家乐玩法教学视频| 百家乐官网www| 百家乐官网管理启发书| 大发888网页版登陆| 百家乐门户网站| 政和县| 新全讯网网址g2vvv| 皇冠百家乐赢钱皇冠| 百家乐官网代理| 运城百家乐官网蓝盾| 明光市| bet365金融技巧| 威尼斯人娱乐城首选802com| 百家乐15人桌布| 百家乐娱乐城主页| 四方百家乐官网的玩法技巧和规则| 在线百家乐官网3d| 百家乐官网如何破解| 百家乐官网tt娱乐| 伟易博| 快乐之都| 明升娱乐城开户| 玩百家乐出千方法|