百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Eng · 繁體 · 簡體

 [   ] 

Dr. GAO Siyang (高思陽博士)

BS(PKU), PhD(Univ of Wisconsin)

Associate Professor

Contact Information

Office:  AC1-P6611
Phone: 34424759
Email: siyangao@cityu.edu.hk
Web: Google Scholar

Research Interests

  • Simulation modeling and optimization
  • Large language models
  • Machine learning
  • Healthcare management
Dr. Siyang Gao received a B.S. in Statistics and Probability from School of Mathematics at Peking University in 2009 and a Ph.D. in Industrial Engineering at University of Wisconsin-Madison in 2014. His research interests include simulation modeling and optimization, applied probability, machine learning, and healthcare management.


Publications Show All Publications Show Prominent Publications


Journal

  • Du, J. , Gao, S. & Chen, C.-H. (in press). A contextual ranking and selection method for personalized medicine. Manufacturing & Service Operations Management.
  • Li, Y. , Gao, S. & Shi, Z. (2023). Asymptotic optimality of myopic ranking and selection procedures. Automatica. 151. 110896 .
  • Li, C. , Gao, S. & Du, J. (2023). Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates. INFORMS Journal on Computing. 35(2). 386 - 402.
  • Li, Y. & Gao, S. (2023). Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms. Automatica. 153. 111042 .
  • Chen, W. , Gao, S. , Chen, W. & Du, J. (2023). Optimizing Resource Allocation in Service Systems via Simulation: A Bayesian Formulation. Production and Operations Management. 32(1). 65 - 81.
  • Gao, F. , Shi, Z. , Gao, S. & Xiao, H. (2019). Efficient simulation budget allocation for subset selection using regression metamodels. Automatica. 106. 192 - 200.
  • Gao, S. , Shi, L. & Zhang, Z. (2018). A peak-over-threshold search method for global optimization. Automatica. 89. 83 - 91.
  • Xiao, H. & Gao, S. (2018). Simulation budget allocation for selecting the top-m designs with input uncertainty. IEEE Transactions on Automatic Control. 63(9). 3127 - 3134.
  • Gao, S. , Chen, W. & Shi, L. (2017). A new budget allocation framework for the expected opportunity cost. Operations Research. 65. 787 - 803.
  • Gao, S. & Chen, W. (2017). A partition-based random search for stochastic constrained optimization via simulation. IEEE Transactions on Automatic Control. 62. 740 - 752.
  • Gao, S. & Chen, W. (2017). Efficient feasibility determination with multiple performance measure constraints. IEEE Transactions on Automatic Control. 62. 113 - 122.
  • Gao, S. , Xiao, H. , Zhou, E. & Chen, W. (2017). Robust ranking and selection with optimal computing budget allocation. Automatica. 81. 30 - 36.
  • Xiao, H. & Gao, S. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica. 84. 117 - 127.
  • Gao, S. & Chen, W. (2016). A new budget allocation framework for selecting top simulated designs. IIE Transactions. 48. 855 - 863.
  • Gao, S. & Chen, W. (2015). Efficient subset selection for the expected opportunity cost. Automatica. 59. 19 - 26.
  • Gao, S. & Shi, L. (2015). Selecting the best simulated design with the expected opportunity cost bound. IEEE Transactions on Automatic Control. 60(10). 2785 - 2790.

Conference Paper

  • Chen, S. , Xiong, M. , Liu, J. , Wu, Z. , Xiao, T. , Gao, S. & He, J. (in press). In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation. 41st International Conference on Machine Learning (ICML).
  • Yu, Z. , Dai, L. , Xu, S. , Gao, S. & Ho, C. (2023). Fast Bellman updates for Wasserstein distributionally robust MDPs. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 30554 - 30578).
  • Chen, S. , Zhao, Y. , Zhang, J. , Chern, I.-C. , Gao, S. , Liu, P. & He, J. (2023). FELM: Benchmarking factuality evaluation of large language lodels. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 44502 - 44523).
  • Yang, L. , Gao, S. & Ho, C. (2023). Improving the knowledge gradient algorithm. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 61747 - 61758).
  • Li, Y. & Gao, S. (2022). On the finite-time performance of the knowledge gradient algorithm. 39th International Conference on Machine Learning (ICML). (pp. 12741 - 12764).


External Services


Professional Activity

  • 2021 - Now, Associate editor, IEEE Transactions on Automation Science and Engineering.
  • 2021 - Now, Associate editor, Journal of Simulation.


For prospective students

  • I am looking for qualified Ph.D. students (with strong background in mathematics, probability and statistics) to do research in simulation optimization and machine learning. If you are interested, please send your CV and transcript to my email (siyangao@cityu.edu.hk) for consideration.


Links



Last update date : 19 May 2024
百家乐官网路有几家| 广州百家乐官网娱乐场| 赌博百家乐官网游戏| 试玩百家乐1000| 日博娱乐城开户| 百家乐官网投注方法投资法| 百家乐必赢法冯耘| 百家乐官网赌博论坛在线| 真人百家乐平台下载| 百家乐官网单机游戏免费| 电子百家乐作假| 百家乐官网骰盅规则| 大发888登陆网页游戏| 百家乐官网那里信誉好| 体育博彩概论| 百家乐家乐娱乐城| 网上百家乐官网赌博犯法吗 | 真人百家乐官网做假| 娱乐城官方网| 百家乐桌布动物| 百家乐看牌技巧| 永登县| 大发888促销代码| 百家乐知敌便能制胜| 百家乐官网评级网站| 金龙国际娱乐城| 大发888送58| 爱赢百家乐的玩法技巧和规则| 川宜百家乐分析软件| 百家乐官网翻天在线观看| 百家乐官网北京| 金沙城百家乐官网大赛规则| 万安县| 新竹市| 百家乐官网澳门路规则算法| 最新皇冠足球投注比分网| 博彩老头排列三| 大发888黄金版娱乐场| 专业的百家乐官网玩家| 百家乐官网游戏全讯网2| 百家乐官网怎么玩能赢钱|