百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Eng · 繁體 · 簡體

 [   ] 

Dr. GAO Siyang (高思陽博士)

BS(PKU), PhD(Univ of Wisconsin)

Associate Professor

Contact Information

Office:  AC1-P6611
Phone: 34424759
Email: siyangao@cityu.edu.hk
Web: Google Scholar

Research Interests

  • Simulation modeling and optimization
  • Large language models
  • Machine learning
  • Healthcare management
Dr. Siyang Gao received a B.S. in Statistics and Probability from School of Mathematics at Peking University in 2009 and a Ph.D. in Industrial Engineering at University of Wisconsin-Madison in 2014. His research interests include simulation modeling and optimization, applied probability, machine learning, and healthcare management.


Publications Show All Publications Show Prominent Publications


Journal

  • Du, J. , Gao, S. & Chen, C.-H. (in press). A contextual ranking and selection method for personalized medicine. Manufacturing & Service Operations Management.
  • Li, Y. , Gao, S. & Shi, Z. (2023). Asymptotic optimality of myopic ranking and selection procedures. Automatica. 151. 110896 .
  • Li, C. , Gao, S. & Du, J. (2023). Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates. INFORMS Journal on Computing. 35(2). 386 - 402.
  • Li, Y. & Gao, S. (2023). Convergence Rate Analysis for Optimal Computing Budget Allocation Algorithms. Automatica. 153. 111042 .
  • Chen, W. , Gao, S. , Chen, W. & Du, J. (2023). Optimizing Resource Allocation in Service Systems via Simulation: A Bayesian Formulation. Production and Operations Management. 32(1). 65 - 81.
  • Gao, F. , Shi, Z. , Gao, S. & Xiao, H. (2019). Efficient simulation budget allocation for subset selection using regression metamodels. Automatica. 106. 192 - 200.
  • Gao, S. , Shi, L. & Zhang, Z. (2018). A peak-over-threshold search method for global optimization. Automatica. 89. 83 - 91.
  • Xiao, H. & Gao, S. (2018). Simulation budget allocation for selecting the top-m designs with input uncertainty. IEEE Transactions on Automatic Control. 63(9). 3127 - 3134.
  • Gao, S. , Chen, W. & Shi, L. (2017). A new budget allocation framework for the expected opportunity cost. Operations Research. 65. 787 - 803.
  • Gao, S. & Chen, W. (2017). A partition-based random search for stochastic constrained optimization via simulation. IEEE Transactions on Automatic Control. 62. 740 - 752.
  • Gao, S. & Chen, W. (2017). Efficient feasibility determination with multiple performance measure constraints. IEEE Transactions on Automatic Control. 62. 113 - 122.
  • Gao, S. , Xiao, H. , Zhou, E. & Chen, W. (2017). Robust ranking and selection with optimal computing budget allocation. Automatica. 81. 30 - 36.
  • Xiao, H. & Gao, S. (2017). Simulation budget allocation for simultaneously selecting the best and worst subsets. Automatica. 84. 117 - 127.
  • Gao, S. & Chen, W. (2016). A new budget allocation framework for selecting top simulated designs. IIE Transactions. 48. 855 - 863.
  • Gao, S. & Chen, W. (2015). Efficient subset selection for the expected opportunity cost. Automatica. 59. 19 - 26.
  • Gao, S. & Shi, L. (2015). Selecting the best simulated design with the expected opportunity cost bound. IEEE Transactions on Automatic Control. 60(10). 2785 - 2790.

Conference Paper

  • Chen, S. , Xiong, M. , Liu, J. , Wu, Z. , Xiao, T. , Gao, S. & He, J. (in press). In-Context Sharpness as Alerts: An Inner Representation Perspective for Hallucination Mitigation. 41st International Conference on Machine Learning (ICML).
  • Yu, Z. , Dai, L. , Xu, S. , Gao, S. & Ho, C. (2023). Fast Bellman updates for Wasserstein distributionally robust MDPs. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 30554 - 30578).
  • Chen, S. , Zhao, Y. , Zhang, J. , Chern, I.-C. , Gao, S. , Liu, P. & He, J. (2023). FELM: Benchmarking factuality evaluation of large language lodels. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 44502 - 44523).
  • Yang, L. , Gao, S. & Ho, C. (2023). Improving the knowledge gradient algorithm. Advances in Neural Information Processing Systems (NeurIPS). 36. (pp. 61747 - 61758).
  • Li, Y. & Gao, S. (2022). On the finite-time performance of the knowledge gradient algorithm. 39th International Conference on Machine Learning (ICML). (pp. 12741 - 12764).


External Services


Professional Activity

  • 2021 - Now, Associate editor, IEEE Transactions on Automation Science and Engineering.
  • 2021 - Now, Associate editor, Journal of Simulation.


For prospective students

  • I am looking for qualified Ph.D. students (with strong background in mathematics, probability and statistics) to do research in simulation optimization and machine learning. If you are interested, please send your CV and transcript to my email (siyangao@cityu.edu.hk) for consideration.


Links



Last update date : 19 May 2024
棋牌娱乐网,| 百家乐官网群号| 百家乐投注方法投资法| 百家乐打印机分析| 网络赌博平台| 大发888玩哪个能赢钱| 新2百家乐官网娱乐城| 网上百家乐官网有假的吗| 百家乐出老千视频| 女神百家乐的玩法技巧和规则 | 百家乐博娱乐网赌百家乐的玩法技巧和规则| 百家乐官网最新产品| 海立方百家乐官网客户端| 百家乐作弊手段| 澳门百家乐官网单注下注| 3d俄罗斯轮盘| 大发888站群| 百家乐园百利宫娱乐城怎么样百家乐园百利宫娱乐城如何 | 新濠百家乐官网娱乐场| 豪门国际娱乐| 大杀器百家乐学院| 推二八杠技巧| 百家乐比赛技巧| 国美百家乐官网的玩法技巧和规则| 百家乐官网一拖三| 长春百家乐官网的玩法技巧和规则 | 百家乐机器图片| 大发888网页版| 沙雅县| 百家乐官网电话投注怎么玩| 做生意店铺风水| 下载百家乐的玩法技巧和规则| 大发888游戏平台46| 房产| 网上玩百家乐官网的玩法技巧和规则 | 在线提供百家乐| 长寿区| 百家乐官网大小技巧| 百家乐官网开户就送现金| 电子百家乐官网打法| 百家乐赌博大揭密|