CS1315: INTRODUCTION TO COMPUTER PROGRAMMING

Effective Term

Semester A 2024/25

Part I Course Overview

Course Title

Introduction to Computer Programming

Subject Code

CS - Computer Science

Course Number

1315

Academic Unit

Computer Science (CS)

College/School

College of Computing (CC)

Course Duration

One Semester

Credit Units

3

Level

B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction

English

Medium of Assessment

English

Prerequisites

Nil

Precursors

Nil

Equivalent Courses

CS2315 Computer Programming

Exclusive Courses

CS2310 Computer Programming

CS2311 Computer Programming

CS2313 Computer Programming

CS2360 Java Programming

Part II Course Details

Abstract

This course aims to equip the students with key concepts and techniques of programming using a high-level programming language and to develop practical skills in producing quality programs. Basics of object-oriented programming will also be covered in the course. No prior programming or computer science experience is required.

Course Intended Learning Outcomes (CILOs)

	CILOs	Weighting (if app.)	DEC-A1	DEC-A2	DEC-A3
1	Explain the structure of an object-oriented computer program.	10	X	X	
2	Analyze, test and debug computer programs.	15	X	X	
3	Solve a task by applying programming techniques, which involve simple algorithm and data structures.	60		х	
4	Design and construct well-structured programs with good programming practices.	15		X	X

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Learning and Teaching Activities (LTAs)

	LTAs	Brief Description	CILO No.	Hours/week (if applicable)
1	Lecture	Students will engage with various programming concepts and techniques. The programming concepts will be explained and demonstrated with examples.	1, 2, 3, 4	3 hours per week

2	Lab	Students will put theory into practice and be proficient in a programming language. The laboratory exercises consist of programming tasks and students can try out their programs using a common integrated development environment. Feedback will be given to students on their work.	1, 2, 3, 4	1 hour per week
3	Assignment	Students will consider the given requirements of more comprehensive tasks and design simple programming solutions by applying and combining various techniques learnt from lectures and laboratory exercises. Students will implement their solutions as practical computer programs, and explain their ideas/algorithms using suitable presentation methods (e.g. a report, flowchart, etc.).	2, 3, 4	After class

Assessment Tasks / Activities (ATs)

	ATs	CILO No.	Weighting (%)	Remarks (e.g. Parameter for GenAI use)
1	Quiz	1, 3, 4	20	Correctly explain the structure of a computer program
2	Assignment	2, 3, 4	20	Select proper test cases to assess the correctness of a program Students are required to work on assignments at least once every four weeks

Continuous Assessment (%)

<u>4</u>೧

Examination (%)

60

Examination Duration (Hours)

2

4 CS1315: Introduction to Computer Programming

Additional Information for ATs

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task

1. Quiz

Criterion

ABILITY to explain, analyse and debug the structure of a computer program

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

2. Assignment

Criterion

CAPACITY for applying programming techniques

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Assessment Task

3. Examination

Criterion

CAPACITY for analyzing and writing effective computer programs

Excellent (A+, A, A-)

High

Good (B+, B, B-)

Significant

Fair (C+, C, C-)

Moderate

Marginal (D)

Basic

Failure (F)

Not even reaching marginal levels

Part III Other Information

Keyword Syllabus

Program design, development of simple algorithms, programming language, control structures, data types, one dimensional arrays, file I-O and data structures, fundamentals on object-based programming; programming style, program testing. Syllabus:

1. Computers and programming

Software hierarchy, the computer as a multi-level language machine. The software development process. Program development environments.

2. Programming techniques and the development of algorithms

Algorithms, programming language, modular decomposition and procedural abstraction, variables, parameter-passing by value, control structures, iteration.

3. Data structures

The concept of data types. Simple data types. Arrays. Strings. Files. Data abstraction: encapsulation, information hiding. Defining and using simple classes. Data structures.

4. Program development practice

Professional programming styles. Program testing. Program documentation.

Reading List

Compulsory Readings

	 Title
1	Richard L. Halterman (2018). Fundamentals of C++ Programming. Southern Adventist University.

Additional Readings

	Title
1	S.B. Lippman, J. Lajoie and B. Moo (2012). C++ Primer. Addison Wesley, 5th edition.
2	H.M. Deitel & P.J. Deitel (2011). C++ How to Program. Pearson Int. Edition, 8th edition.
3	Walter Savitc (2010). Absolute C++. Addison-Wesley, 4th edition.