百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

COURSES >>>


SDSC4001 - Foundation of Reinforcement Learning

Offering Academic Unit
Department of Data Science
Credit Units
3
Course Duration
One Semester
Pre-requisite(s)
Course Offering Term*:
Semester A 2024/25
Semester A 2025/26 (Tentative)

* The offering term is subject to change without prior notice
 
Course Aims

This advanced elective course introduces the essential elements and mathematical foundations of the modern reinforcement learning: the optimal control theory, including dynamic programming and numerical techniques. It emphasizes both the fundamental theories in control theory and the numerical methods in context of reinforcement learning algorithms. It also equips students with computing algorithms and techniques for applications to some practical problems.


Assessment (Indicative only, please check the detailed course information)

Continuous Assessment: 50%
Examination: 50%
Examination Duration: 2 hours

Note: To pass the course, apart from obtaining a minimum of 40% in the overall mark, a student must also obtain a minimum mark of 30% in both continuous assessment and examination components.

 
Detailed Course Information

SDSC4001.pdf

缅甸百家乐的玩法技巧和规则| 明升备用网址 | 万人迷百家乐官网的玩法技巧和规则| 至尊百家乐qvod| 大发888bet娱乐场下载| 百家乐官网技巧娱乐博彩| 8彩娱乐| 百家乐官网五湖四海娱乐| 奇迹百家乐的玩法技巧和规则| 欧华娱乐| 伯爵百家乐娱乐平台| 实战百家乐官网博彩正网| 庄闲和百家乐官网桌布| 老虎机游戏| 凯发百家乐是否是程序控制| 台州市| 百家乐1元投注| 新蔡县| 24是吉还是凶| 百家乐官网庄河闲的赌法| 新彩百家乐的玩法技巧和规则| 邓州市| 百家乐园试玩| 真人百家乐官网软件云南景| 金博士娱乐城优惠| 百家乐最新赌王| 百家乐官网是否有规律| 微信百家乐群二维码| 百家乐官网的分析| 品尊国际娱乐| 真人百家乐怎么玩| 两当县| 大发888娱乐下载网址| 百家乐赢钱密籍| 百家乐分析软件| 百家乐小游戏单机版| 百家乐赔率计算| 百家乐官网评级网站| 澳门博彩 | 大发888真人真钱游戏| 百家乐9人桌|