百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture
20221114
Published on nature energy (14 November 2022)
 

Author(s): Kui Jiang, Jie Zhang, Cheng Zhong, Francis R. Lin, Feng Qi, Qian Li, Zhengxing Peng, Werner Kaminsky, Sei-Hum Jang, Jianwei Yu, Xiang Deng, Huawei Hu, Dong Shen, Feng Gao, Harald Ade, Min Xiao, Chunfeng Zhang, Alex K.-Y. Jen

 
Abstract

At present, high-performance organic photovoltaics mostly adopt a bulk-heterojunction architecture, in which exciton dissociation is facilitated by charge-transfer states formed at numerous donor–acceptor (D-A) heterojunctions. However, the spin character of charge-transfer states originated from recombination of photocarriers allows relaxation to the lowest-energy triplet exciton (T1) at these heterojunctions, causing photocurrent loss. Here we find that this loss pathway can be alleviated in sequentially processed planar–mixed heterojunction (PMHJ) devices, employing donor and acceptor with intrinsically weaker exciton binding strengths. The reduced D-A intermixing in PMHJ alleviates non-geminate recombination at D-A contacts, limiting the chance of relaxation, thus suppressing T1 formation without sacrificing exciton dissociation efficiency. This resulted in devices with high power conversion efficiencies of >19%. We elucidate the working mechanisms for PMHJs and discuss the implications for material design, device engineering and photophysics, thus providing a comprehensive grounding for future organic photovoltaics to reach their full promise.

 

20221114

a, Illustration of excited-state dynamics in OPV: (1) photoexcitation of singlet excitons: S0→LE; (2, 4) transfer pathways of photoexcited singlet excitons: LE→1CT (2) and LE→DSE (4); (3, 5) dissociation of loosely bound singlet excitons into free charges: 1CT→CS (3) or DSE→CS (5); (6, 7) CT states formation through non-geminate recombination: CS→1CT/3CT, possibly with 1CT/3CT→CS repopulation and spin-allowed 1CT→S0 relaxation; (8) 3CT→T1 relaxation, where further T1→S0 relaxation can happen via triplet-charge annihilation, leading to permanent loss of photocarriers. b, Molecular structures of D18 and two major NFAs used in this study. c, Thin-film optical absorption of D18, NFAs and D18/NFA PMHJ blends. d, Energy level diagram of materials (IP: ionization potential corresponding to the highest occupied molecular orbital energy level; EA: electron affinity corresponding to the lowest unoccupied molecular orbital energy level.). e, ToF-SIMS Se2? ion yield of D18/T9SBN-F PMHJ and D18:T9SBN-F BHJ blends plotted over sputtering time. The inset shows the schematic illustration of PMHJ and BHJ blends.

Read more: https://www.nature.com/articles/s41560-022-01138-y#Fig1

 
 
 
 
 
 
 
 
缅甸百家乐赌博有假吗| 波音网百家乐官网合作| 免费百家乐官网统计软件| 明珠百家乐官网的玩法技巧和规则 | 千亿娱乐网站| 百家乐官网天下第一庄| 三元风水24山水法| 大众百家乐娱乐城| 在线棋牌| 百家乐官网智能分析| 太阳城百家乐168| 威尼斯人娱乐网站安全吗| 镇平县| 百家乐发牌铲| 女神百家乐的玩法技巧和规则 | 百家乐最好打法与投注| 大发888娱乐场骗局| 太阳城开户| 真人百家乐官网蓝盾赌场娱乐网规则 | 百家乐压分技巧| 百家乐桌子租| 将乐县| 玩百家乐官网去哪个平台好| 百家乐官网具体怎么收费的| 百家乐辅助器| 六合彩今晚开什么| 百家乐官网赌博赌博平台| 博发百家乐的玩法技巧和规则 | 澳门百家乐长赢打| 金博士百家乐官网娱乐城 | 龙岩棋牌乐| 百家乐官网顶路| 威尼斯人娱乐城官方站| 百家乐官网真人游戏网| 云鼎百家乐官网作弊| 百家乐国际娱乐平台| 皇冠888线上投注| 真人百家乐软件博彩吧| 大发888娱乐场菲律宾| 百家乐官网技巧-百家乐官网开户指定代理网址 | 百家乐官网轮盘桌|