百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Suppressed recombination loss in organic photovoltaics adopting a planar–mixed heterojunction architecture
20221114
Published on nature energy (14 November 2022)
 

Author(s): Kui Jiang, Jie Zhang, Cheng Zhong, Francis R. Lin, Feng Qi, Qian Li, Zhengxing Peng, Werner Kaminsky, Sei-Hum Jang, Jianwei Yu, Xiang Deng, Huawei Hu, Dong Shen, Feng Gao, Harald Ade, Min Xiao, Chunfeng Zhang, Alex K.-Y. Jen

 
Abstract

At present, high-performance organic photovoltaics mostly adopt a bulk-heterojunction architecture, in which exciton dissociation is facilitated by charge-transfer states formed at numerous donor–acceptor (D-A) heterojunctions. However, the spin character of charge-transfer states originated from recombination of photocarriers allows relaxation to the lowest-energy triplet exciton (T1) at these heterojunctions, causing photocurrent loss. Here we find that this loss pathway can be alleviated in sequentially processed planar–mixed heterojunction (PMHJ) devices, employing donor and acceptor with intrinsically weaker exciton binding strengths. The reduced D-A intermixing in PMHJ alleviates non-geminate recombination at D-A contacts, limiting the chance of relaxation, thus suppressing T1 formation without sacrificing exciton dissociation efficiency. This resulted in devices with high power conversion efficiencies of >19%. We elucidate the working mechanisms for PMHJs and discuss the implications for material design, device engineering and photophysics, thus providing a comprehensive grounding for future organic photovoltaics to reach their full promise.

 

20221114

a, Illustration of excited-state dynamics in OPV: (1) photoexcitation of singlet excitons: S0→LE; (2, 4) transfer pathways of photoexcited singlet excitons: LE→1CT (2) and LE→DSE (4); (3, 5) dissociation of loosely bound singlet excitons into free charges: 1CT→CS (3) or DSE→CS (5); (6, 7) CT states formation through non-geminate recombination: CS→1CT/3CT, possibly with 1CT/3CT→CS repopulation and spin-allowed 1CT→S0 relaxation; (8) 3CT→T1 relaxation, where further T1→S0 relaxation can happen via triplet-charge annihilation, leading to permanent loss of photocarriers. b, Molecular structures of D18 and two major NFAs used in this study. c, Thin-film optical absorption of D18, NFAs and D18/NFA PMHJ blends. d, Energy level diagram of materials (IP: ionization potential corresponding to the highest occupied molecular orbital energy level; EA: electron affinity corresponding to the lowest unoccupied molecular orbital energy level.). e, ToF-SIMS Se2? ion yield of D18/T9SBN-F PMHJ and D18:T9SBN-F BHJ blends plotted over sputtering time. The inset shows the schematic illustration of PMHJ and BHJ blends.

Read more: https://www.nature.com/articles/s41560-022-01138-y#Fig1

 
 
 
 
 
 
 
 
网上百家乐平台下载| 菲律宾百家乐官网娱乐场| 大发888手机版下载安| 百家乐官网技术交流群| 立即博百家乐现金网| 网络赌博平台| A8百家乐现金网| 连南| 百家乐技巧运气| 赌场风云演员表| 滨海湾百家乐娱乐城| 百乐门线上娱乐城| 澳门百家乐哪家信誉最好| 网上百家乐官网娱乐场| 澳门百家乐心| 百家乐官网最好的平台是哪个| 飞天百家乐的玩法技巧和规则| 百家乐官网包赢技巧| 百家乐荷| 百家乐官网操作技巧| 江源县| 大发888皇家赌场| 百家乐游戏机博彩正网| 百家乐官网游戏技巧| 利来国际网址| 百家乐棋牌游戏皇冠网| 澳门百家乐官网限红规则| 超级老虎机系统| 百家乐概率怎么算| 大发888娱乐城dafa888dafa8| 娱百家乐官网下载| 博赢国际娱乐城| 百家乐追号工具| 百家乐官网破解仪| 百家乐大路图| 风水24山详解| 百家乐官网平台哪个好本站所有数据都是网友推荐及提供 | 深圳百家乐的玩法技巧和规则| 百家乐官网骗局视频| 澳门百家乐官网哪家信誉最好| 真人轮盘游戏|