百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

mc
Prof. CHAN Chi Wang Michael
陳志宏教授
PhD (Durham)

Professor of Department of Chemistry


Contact Information
Office: YEUNG-P5313
Phone: +852 3442-9678
Email: mcwchan[at]cityu.edu.hk
ORCID ID: 0000-0002-2997-8577
Scopus Author ID: 29067669100

Michael Chan was born in Hong Kong, and emigrated to England in 1978. He received his Ph.D. (on catalyst design and polymerization technology) in 1995 from Durham University. His post-doctoral studies (on light-emitting materials) was conducted at the University of Hong Kong, where he was appointed Research Assistant Professor in 1998. He joined City University of Hong Kong as an Assistant Professor in 2004, and was promoted to Associate Professor (B) in 2009, Associate Professor (A) in 2013, and Professor in 2018.

His invited talks include a Plenary Lecture at 22nd International Symposium on Homogeneous Catalysis (XXII-ISHC) in Lisbon, Portugal in July 2022, and a Keynote Lecture at 16th International Symposium on Relations between Homogeneous and Heterogeneous Catalysis (ISHHC-16) in Sapporo, Japan in August 2013.  He was a Symposium Co-organizer for "Polyolefins Chemistry and Beyond - From Bench To Commercial Scale" (Symposium #211) at Pacifichem 2010 in Honolulu, Hawaii in December 2010, and has held visiting appointments at Osaka University, University of Münster and University of British Columbia.

His papers on C-H···F-C interactions in post-metallocene catalysts have been selected as Cover Pictures in Chemistry – A European Journal, and an overview was published in Accounts of Chemical Research. He has been actively engaged in collaborative research on olefin polymerization catalysts with industrial partners, and has obtained 8 international patents.

Major Honours

Founding Member, Hong Kong Young Academy of Sciences (year of induction: 2018).

Mitsui Chemicals Catalysis Science Award of Encouragement (2007).

 

Positions Available in Catalysis / Supramolecular / Organometallic Chemistry

PhD studentships are available in topics including (but not limited to): coordination/organometallic (Schlenk-type)/supramolecular chemistry and/or homogeneous catalysis.

PhD candidates must have a good MPhil or BSc degree in chemistry, and proven English proficiency (TOEFL: minimum total score of 550 (paper-based) / 79 (internet-based) / 59 (revised paper-delivered test); or IELTS: overall score of 6.5). The ideal candidate should display good problem-solving skills and creativity, and possess a strong background/experience in synthetic (organic/coordination) chemistry.

PhD applications should be made asap (applications will be accepted until all positions are filled). For initial enquiries, please contact Prof. Chan by email and include a full CV with contact details of referees.

 

Research Interests and Projects

The following topics, underpinned by utilization of supramolecular strategies, are under investigation:

  1. design of novel catalyst systems for polymerization reactions, and development of 'weak attractive ligand–polymer interactions' in catalysis;
  2. crowded and shape-persistent luminescent molecular and polymeric architectures exhibiting unusual photophysical and conformational properties;
  3. development of 'shape-persistent bimetallic design' approach for catalytic production of valuable feedstock and polymers from sustainable resources.

MC

4
picture21
mcwchan
3_rev
 
mc
ChemComm

 

Selected Publications

  1. Geometrically Constrained Cofacial Bi-Titanium Olefin Polymerization Catalysts: Tuning and Enhancing Comonomer Incorporation Density, J. Bao, Y. Li, C.-M. Chan, K.-C. Law, S.-M. Yiu, M. C. W. Chan, ACS Catal., 2024, 14, 17911–17918. https://doi.org/10.1021/acscatal.4c05888
  2. Bis-[C(sp3)-Chelating] Ti2 Catalysts Supported by Arylene-1,4-Diyl-2,3-X2 Bridges for Olefin Copolymerization: X Substituents Impose Conformational Cooperative Effects, Y. Li, J. Bao, Q. Liu, M.-K. Tse, M. C. W. Chan, Dalton Trans., 2024, 53, 14391–14398. https://doi.org/10.1039/d4dt02006e
  3. Group 4 Complexes Supported by Pyridine-2-Phenolate-6-Arylmethine Ligands: Spectroscopic and Structural Characterization and Olefin Polymerization Catalysis, J. Bao, Y. Li, Y. Chen, S.-M. Yiu, M. C. W. Chan, Organometallics, 2024, 43, 1600–1607. https://doi.org/10.1021/acs.organomet.4c00196
  4. Cooperativity in Shape-Persistent Bis-(Zn-salphen) Catalysts for Efficient Cyclic Carbonate Synthesis under Mild Conditions, Y. Xia, S. He, J. Bao, H. Hirao, S.-M. Yiu, M. C. W. Chan, Inorg. Chem., 2022, 61, 19543–19551. DOI: 10.1021/acs.inorgchem.2c03480
  5. Saccharide-Functionalized Poly(Zn-salphen)-alt-(m-and p-phenyleneethynylene)s as Dynamic Helical Metallopolymers, C. Zhao, S. Meng, H.-N. Chan, X. Wang, H.-W. Li, M. C. W. Chan, Angew. Chem. Int. Ed., 2022, 61, e202115712. DOI: 10.1002/anie.202115712
  6. Group 4 Post-Metallocenes Supported by [OCH2N,C(σ-aryl)] Auxiliaries Bearing a Seven-Membered Metallacycle: Synthesis, Characterization and Catalysts for Olefin Polymerization, C.-C. Liu, Q. Liu, S.-M. Yiu, M. C. W. Chan, Organometallics, 2019, 38, 2963–2971. DOI: 10.1021/acs.organomet.9b00307
  7. Olefin Polymerization Reactivity of Group 4 Post-Metallocene Catalysts Bearing a Four-Membered C(sp3)-Donor Chelate Ring, C.-C. Liu, Q. Liu, P.-K. Lo, K.-C. Lau, S.-M. Yiu, M. C. W. Chan, ChemCatChem, 2019, 11, 628635. DOI: 10.1002/cctc.201801008
  8. Poly(Zn-salphen)-alt-(p-phenyleneethynylene)s as Dynamic Helical Metallopolymers: Luminescent Properties and Conformational Behavior, C. Zhao, S. Sun, W.-L. Tong, M. C. W. Chan, Macromolecules, 2017, 50, 6896–6902. DOI: 10.1021/acs.macromol.7b01269
  9. Multifaceted Chelating μ-(η33-antifacial)-(cis-C4R2H2) Coordination Motif in Binuclear Complexes, C.-C. Liu, M. C. W. Chan, P.-K. Lo, K.-C. Lau, S.-M. Yiu, Chem. Commun., 2016, 52, 11056–11059 (Cover Article; Inside). DOI: 10.1039/c6cc05535d
  10. Topologically Diverse Shape-Persistent Bis-(Zn-salphen) Catalysts: Efficient Cyclic Carbonate Formation under Mild Conditions, S. He, F. Wang, W.-L. Tong, S.-M. Yiu, M. C. W. Chan, Chem. Commun., 2016, 52, 1017–1020. DOI: 10.1039/c5cc08794e
  11. Chelating σ-Aryl Post-Metallocenes: Probing Intramolecular [C–H···F–C] Interactions and Unusual Reaction Pathways, C.-C. Liu, M. C. W. Chan, Acc. Chem. Res., 2015, 48, 1580–1590. DOI: 10.1021/acs.accounts.5b00008 
  12. Luminescent Oligo(ethylene glycol)-Functionalized Cyclometalated Platinum(II) Complexes: Cellular Characterization and Mitochondria-Specific Localization, Z. Guo, W.-L. Tong, M. C. W. Chan, Chem. Commun., 2014, 50, 1711–1714. DOI: 10.1039/c3cc47150k
  13. Shape-Persistent (Pt-salphen)2 Phosphorescent Coordination Frameworks: Structural Insights and Selective Perturbations, Z. Guo, S.-M. Yiu, M. C. W. Chan, Chem. Eur. J., 2013, 19, 8937–8947. DOI: 10.1002/chem.201300421
  14. Crowded Bis-(M-salphen) [M = Pt(II), Zn(II)] Coordination Architectures: Luminescent Properties and Ion-Selective Responses, W.-L. Tong, S.-M. Yiu, M. C. W. Chan, Inorg. Chem., 2013, 52, 7114–7124. DOI: 10.1021/ic400692x
  15. Olefin Polymerization Behavior of Titanium(IV) Pyridine-2-phenolate-6-(σ-aryl) Catalysts: Impact of ‘py-Adjacent’ and Phenolate Substituents, J. C. Y. Lo, M. C. W. Chan, P.-K. Lo, K.-C. Lau, T. Ochiai, H. Makio, Organometallics, 2013, 32, 449–459. DOI: 10.1021/om300832q
  16. Scalar Coupling Across [C-H···F-C] Interactions in (σ-Aryl)-Chelating Post-Metallocenes, L.-C. So, C.-C. Liu, M. C. W. Chan, J. C. Y. Lo, K.-H. Sze, N. Zhu, Chem. Eur. J., 2012, 18, 565–573 (Cover Picture). DOI: 10.1002/chem.201102439
  17. Alternating Poly(Pt-salphen)-(p-phenyleneethynylene) as Phosphorescent Conjugated Linear-Rod and Coilable Sensory Materials, S. Sun, W.-L. Tong, M. C. W. Chan, Macromol. Rapid Commun., 2010, 31, 1965–1969. DOI: 10.1002/marc.201000266
  18. Shape-Persistent Binuclear Cyclometalated Pt(II) Luminophores: Pushing π-Mediated Excimeric Fluid Emissions into the NIR Region and Ion-Induced Perturbations, Z. Guo, M. C. W. Chan, Chem. Eur. J., 2009, 15, 12585–12588. DOI: 10.1002/chem.200902328
  19. Neutron and X-Ray Diffraction and Spectroscopic Investigations of Intramolecular [C-H···F-C] Contacts in Post-Metallocene Polyolefin Catalysts: Modeling Weak Attractive Polymer–Ligand Interactions, M. C. W. Chan, S. C. F. Kui, J. M. Cole, G. J. McIntyre, S. Matsui, N. Zhu, K.-H. Tam, Chem. Eur. J., 2006, 12, 26072619 (Cover Picture). DOI: 10.1002/chem.200501054
  20. Observation of Intramolecular [C-H···F-C] Contacts in Non-Metallocene Polyolefin Catalysts: Model for Weak Attractive Interactions between Polymer Chain and Non-Innocent Ligand, S. C. F. Kui, N. Zhu, M. C. W. Chan, Angew. Chem. Int. Ed., 2003, 42, 16281632. DOI: 10.1002/anie.200219832
百家乐官网平台开户哪里优惠多| 百乐坊娱乐城噢门| 广东百家乐扫描分析仪| 大发888| 娱乐城注册送钱| 上海百家乐官网的玩法技巧和规则 | 百家乐官网电子发牌盒| 百家乐赌博论谈| bet365 网址| 百家乐统计工具| 百家乐官网007| 大发888总结经验| 金榜百家乐官网娱乐城| 加州百家乐的玩法技巧和规则| 百家乐官网顺序| 大发888线上娱乐城二十一点| 云浮市| 百家乐官网赢的秘诀| 百家乐博彩博彩网| 百家乐官网规则技法| 百家乐游戏规则玩法| 六合彩印刷图库| 时时博百家乐娱乐城| 上游棋牌大厅下载| 真人百家乐澳门娱乐城| 百家乐官网筹码500| 百家乐微笑心法搜索| 皇冠网上投注网| 威尼斯人娱乐城惊喜| 百家乐闲拉长龙| 盈丰娱乐城| 百家乐手机壳| 赌博百家乐官网的玩法技巧和规则| 云顶国际娱乐开户| 老k百家乐的玩法技巧和规则| 百家乐官网网上真钱赌场娱乐网规则 | 百家乐波音平台有假吗| 百家乐官网视频游戏账号| 将军百家乐的玩法技巧和规则 | 喀喇沁旗| 威尼斯人娱乐城注册网址|