百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Submitted by cheukllui3 on
Atomic, Molecular, and Optical Physics
Physics
Generating ultra-violet lasers with near-infrared light through “domino upconversion” of nanoparticles

Strong and coherent ultraviolet light emission devices have enormous medical and industrial application potential, but generating ultraviolet light emission in an effective way has been challenging. Recently, a collaborative research team co-led by researchers from City University of Hong Kong (CityU) developed a new approach to generate deep-ultraviolet lasing through a “domino upconversion” process of nanoparticles using near-infrared light, which is commonly used in telecommunication devices. The findings provide a solution for constructing miniaturized high energy lasers for bio-detection and photonic devices.

In the world of nanomaterials, “photon upconversion” means that when nanomaterial is excited by light or photons with a long wavelength and low energy, it emits light with a shorter wavelength and higher energy, such as ultraviolet light.

Challenge in achieving photon upconversion
 

Photon upconversion characterised by high-energy emission upon excitation of lower-energy photons is of exceptional interest among scientists. This is because it holds potential for cost-effective construction of miniaturised deep-ultraviolet emission devices, which have enormous medical and industrial application potential, such as microbial sterilisation and biomedical instrumentation. However, the photon upconversion process has limited flexibility, as it occurs mainly in special lanthanide ions comprising fixed sets of energy levels.

A research team co-led by Professor Feng Wang, from Department of Materials Science and Engineering, and Professor Sai-tak Chu, from Department of Physics at CityU, together with Dr Limin Jin from the Harbin Institute of Technology (Shenzhen), overcame the obstacle by introducing a “domino upconversion” tactic.

Special structural design of nanopracticles
 

Domino upconversion is like a chain reaction, in which energy amassed in one upconversion course triggers another succeeding upconversion process. By using a doughnut-shaped microresonator, incorporated with specially designed “upconversion nanoparticles”, the team successfully generated high-energy, deep-ultraviolet light emission at 290nm by excitation of low-energy infrared photons at 1550nm.

“As the excitation wavelength was in the telecommunication wavelength range, the nanoparticles can be readily used and integrated into existing fibre-optic communication and photonic circuits without complicated modification or adaptation,” said Professor Wang. The findings were published in the journal Nature Communications, titled “Ultralarge anti-Stokes lasing through tandem upconversion”.

lasers
a) Schematic design of a NaYF4:Yb/Tm@NaErF4:Ce@NaYF4 core–shell–shell nanoparticle for domino upconversion (left panel) and the proposed energy transfer mechanism in the nanoparticle. b) A high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of the NaYF4:Yb/Tm@NaErF4:Ce@NaYF4 nanoparticles, highlighting the layered structure.

The idea of constructing “domino upconversion” was inspired by a previous study of energy transfer in core-shell nanoparticles by Professors Wang and Chu. The core-shell structure design of the nanoparticle allows the multiphoton luminescence process in erbium (Er3+) ions. By adapting a similar synthetic protocol, the team successfully constructed “core-shell-shell” nanoparticles through a wet-chemistry method to explore the energy-transfer mechanism of lanthanide ions, including thulium (Tm3+) ions.

Doughnut-shaped microresonator
 

Through the careful design of doping composition and concentration in different layers or shells of the upconversion nanoparticles, the team successfully achieved a tandem combination of Er3+ and Tm3+ ions-based upconversion processes (domino upconversion). In the experiment, the Er3+ ions contained in the outer shell responded to 1550 nm near-infrared photon excitation, a wavelength located in the telecommunication range. By incorporating the nanoparticles into a doughnut-shaped microresonator cavity, the team further generated a high-quality ultraviolet microlaser, demonstrating lasing action at 289 nm by 1550 nm excitation.

“The upconversion nanoparticles act as “wavelength converters” to multiply the energy of incident infrared photons,” explained Professor Wang. He expects the findings to pave the way for the construction of miniaturised short-wavelength lasers and says they may inspire new ideas for designing photonic circuits. He added that the miniaturised ultraviolet laser using this domino upconversion technology can provide a platform for sensitive bio-detection, such as the detection of cancer cell secretion, by monitoring the lasing intensity and threshold, which offers great biomedical application potential in the future.

lasers
From left to right: Dr.  Tianying Sun, Professor Feng Wang, Professor Sai-tak Chu and Dr . Yuhua Li . Their “domino upconversion” process was inspired by their previous collaborative study on energy transfer in core-shell nanoparticles. 

The co-first authors of the research are Dr.  Tianyin Sun and Dr.  Bing Chen, from the Department of Materials Science and Engineering at CityU. Other team members included Miss Yang GuoMiss Qi ZhuDr.  Jianxiong Zhao and Dr.  Yuhua Li from CityU, and researchers from Sun Yat-sen University, Shenzhen University and Harbin Institute of Technology (Shenzhen). This work was supported by the National Natural Science Foundation of China, the Research Grants Council of Hong Kong, and the Shenzhen Fundamental Research Fund.

 

This research article originated from CityU Research Stories.

皇冠网hg8333.com| 516棋牌游戏补丁| 青海省| 金杯百家乐官网的玩法技巧和规则| 百家乐官网算牌e世博| 百家乐官网翻天腾讯视频| 百家乐官网视频游戏掉线| 香港百家乐官网玩法| 百家乐黑牌靴| 百家乐赌局| 赌场百家乐官网技巧| 百家乐官网国际娱乐场| 百家乐白菜价| 百家乐官网作弊内幕| 百家乐有技巧么| 华池县| 百家乐博彩公| 百家乐官网一拖三| 大发888娱乐城在线客服| 太阳城网站| 百家乐视频多开| 百家乐官网有多少种游戏| 百家乐娱乐城体育| 百家乐官网玩法百科| 百家乐下载免费软件| 百家乐平台有什么优惠| 卡迪拉娱乐城开户| 百家乐的庄闲概率| 百家乐官网玩法开户彩公司| 金龙博彩网| 百家乐官网赌台| 星际博彩| 玩机器百家乐心得| 礼泉县| 极速百家乐真人视讯| 百家乐官网娱乐城玩法| 百家乐赌场分析网| 百家乐官网孖宝揽| 最好的百家乐官网好评平台都有哪些 | 澳门百家乐官网是骗人的| 新乐园百家乐娱乐城|