百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Submitted by cheukllui3 on
Materials Chemistry
Renewable Energy
Solar Cell
Sustainability
Pivotal breakthrough in adapting perovskite solar cells for renewable energy at City University of Hong Kong; published in Science

A huge step forward in the evolution of perovskite solar cells recorded by researchers at City University of Hong Kong (CityU) will have significant implications for renewable energy development.

The CityU innovation paves the way for commercialising perovskite solar cells, bringing us closer to an energy-efficient future powered by sustainable sources.

“The implications of this research are far-reaching, and its potential applications could revolutionise the solar energy industry,” said Professor Zonglong Zhu of the Department of Chemistry at CityU, who collaborated with Professor Zhong’an Li at Huazhong University of Science and Technology.

prof zhu
Professor Zonglong Zhu. (Credit: City University of Hong Kong)

New approach

Perovskite solar cells are a promising frontier in the solar energy landscape, known for their impressive power conversion efficiency. However, they have one significant drawback: thermal instability, i.e. they don’t tend to perform well when exposed to high temperatures.

The team at CityU has engineered a unique type of self-assembled monolayer, or SAM for short, and anchored it on a nickel oxide surface as a charge extraction layer.

Molecular structure of the novel SAM, schematic illustration of SAM deposition method, and photovoltaic performance of SAM-based perovskite solar cells. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Molecular structure of the novel SAM, schematic illustration of SAM deposition method, and photovoltaic performance of SAM-based perovskite solar cells. (Photo credit: Professor Zonglong Zhu’s research group / City University of Hong Kong)

“Our approach has dramatically enhanced the thermal robustness of the cells,” said Professor Zhu, adding that thermal stability is a significant barrier to the commercial deployment of perovskite solar cells.

“By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, boasting an impressive efficiency rate of 25.6%, even after operated under high temperatures, around (65℃) for over 1,000 hours. This is a milestone achievement,” said Professor Zhu.


The journal Science has reported the research as “Stabilized hole-selective layer for high-performance inverted p-i-n perovskite solar cells”.

Raising the heat shield

The motivation for this research was born from a specific challenge in the solar energy sector: the thermal instability of perovskite solar cells.

“Despite their high power conversion efficiency, these solar cells are like a sports car that runs exceptionally well in cool weather but tends to overheat and underperform on a hot day. This was a significant roadblock preventing their widespread use,” said Professor Zhu.

The CityU team has focused on the self-assembled monolayer (SAM), an essential part of these cells, and envisioned it as a heat-sensitive shield that needed reinforcement.

“We discovered that high-temperature exposure can cause the chemical bonds within SAM molecules to fracture, negatively impacting device performance . So our solution was akin to adding a heat-resistant armour - a layer of nickel oxide nanoparticles, topped by a SAM, achieved through an integration of various experimental approaches and theoretical calculations,” Professor Zhu said.

To counteract this issue, the CityU team introduced an innovative solution: anchoring the SAM onto an inherently stable nickel oxide surface, thereby enhancing the SAM's binding energy on the substrate. Also, they synthesised a new SAM molecule of their own, creating an innovative molecule that promotes more efficient charge extraction in perovskite devices.

Electrical properties and theoretical calculations of perovskite solar cells under thermal stress. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Electrical properties and theoretical calculations of perovskite solar cells under thermal stress. (Photo credit: Professor Zonglong Zhu’s research group / City University of Hong Kong)

Better efficiency in higher temperatures

By introducing a thermally robust charge extraction layer, our improved cells retain over 90% of their efficiency, even after prolonged exposure (over 1,200 hours) to high temperatures, around (65℃). (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
By introducing a thermally robust charge extraction layer, the improved cells retain over 90% of their efficiency, even after prolonged exposure (over 1,200 hours) to high temperatures, around (65℃). (Photo credit: Professor Zonglong Zhu’s research group / City University of Hong Kong)

The primary outcome of the research is the potential transformation of the solar energy landscape. By improving the thermal stability of perovskite solar cells through the innovatively designed SAMs, the team has laid the foundation for these cells to perform efficiently even in high-temperature conditions.

“This breakthrough is pivotal as it addresses a major obstacle that previously impeded wider adoption of perovskite solar cells. Our findings could significantly broaden the utilisation of these cells, pushing their application boundaries to environments and climates where high temperatures were a deterrent,” said Professor Zhu.

The importance of these findings cannot be overstated. By bolstering the commercial viability of perovskite solar cells, CityU is not merely introducing a new player in the renewable energy market, it’s setting the stage for a potential game-changer that could play a vital role in the global shift towards sustainable and energy-efficient sources.

“This technology, once fully commercialised, could help decrease our dependence on fossil fuels and contribute substantially to combating the global climate crisis,” he added.

Photo of perovskite solar cells with novel SAM. (Photo credit: Prof. Zhu Zonglong’s research group / City University of Hong Kong)
Photo of perovskite solar cells with novel SAM. (Photo credit: Professor Zonglong Zhu’s research group / City University of Hong Kong)

 

This research article originated from CityU Research Stories.

真人百家乐官网破解软件下载| 百家乐是个什么样的游戏| 永胜博| 首席百家乐官网的玩法技巧和规则| 战神百家乐的玩法技巧和规则| 苏尼特左旗| 百家乐娱乐场真人娱乐场| 百家乐官网输一压二| 玩百家乐游戏经验| 百家乐官网路纸计算| 天堂鸟百家乐的玩法技巧和规则| 网上百家乐官网游戏玩法 | 百家乐送钱平台| 真人百家乐官网博弈| 娱乐城注册送28| 太阳百家乐官网网址| 宝马会网上娱乐| 百家乐投注助手| 博盈百家乐官网游戏| 大发888备用网址大全| 百家乐转盘技巧| 百家乐官网是多少个庄闲| 涂山百家乐的玩法技巧和规则| 百家乐官网如何打轮盘| 时时彩论坛| 蓝盾百家乐赌场| 新利| 在线玩百家乐的玩法技巧和规则| 百家乐官网技巧头头娱乐| 赌博| 欢乐博百家乐娱乐城| 贵族百家乐官网的玩法技巧和规则 | 迪威百家乐娱乐| 保单机百家乐官网破解方法| 大发888官网免费58| 百家乐赌场破解方法| ez百家乐官网技巧| 足球竞猜| 立博百家乐的玩法技巧和规则 | 优博国际| 棋牌小游戏下载|