百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

温宿县| 华硕百家乐的玩法技巧和规则 | 金杯百家乐官网的玩法技巧和规则 | 百家乐官网小游戏单机版| 百家乐官网筹码套装包邮| 大发888掉线| 百家乐官网玩法百科| 百家乐是否违法| 大发888游戏平台客户端下载| 伯爵百家乐官网娱乐场| 二八杠网| 泰山百家乐官网的玩法技巧和规则 | 大发888在线娱乐加盟合作| 百家乐官网论坛博彩啦| 马牌百家乐的玩法技巧和规则| 百家乐官网看炉子的方法| 休闲百家乐的玩法技巧和规则| 百家乐官网破解软件真的有用吗| 大发888亚洲游戏平台| 金百家乐官网的玩法技巧和规则| 大发888 大发888| r百家乐娱乐下载| 百家乐官网大眼仔用法| 百家乐玩法说| 金界百家乐官网的玩法技巧和规则 | 中原百家乐的玩法技巧和规则| 88娱乐城2官方网站| 百家乐的必赢方法| 宝马会网上娱乐| 百家乐打立了| 祁门县| 温州市百家乐ktv招聘| 真人百家乐出售| 利来游戏| 太阳城百家乐赌博害人| 7人百家乐官网中号桌布| 博狗娱乐城注册| 澳门百家乐官网官网| 丽星百家乐的玩法技巧和规则| 2024年九运的房屋风水| 百家乐官网太阳城开户|