百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Around the convergence problem in mean-field control theory and the associated Hamilton-Jacobi equations

Dr Samuel Daudin
Date & Time
01 Apr 2025 (Tue) | 04:00 PM - 05:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/CU2-KG4SQPCKQXdOUQYEBA

ABSTRACT

The aim of this talk is to discuss recent progress on the convergence problem in mean-field control theory and the study of associated nonlinear PDEs. We are interested in optimal control problems involving a large number of interacting particles subject to independent Brownian noises. When the number of particles tends to infinity, the problem simplifies to a McKean-Vlasov-type optimal control problem for a typical particle. I will present recent results concerning the quantitative analysis of this convergence. More specifically, I will discuss an approach based on the analysis of associated value functions. These functions are solutions of high-dimensional Hamilton-Jacobi equations, and the convergence problem translates into a stability problem for the limit equation, which is posed on the space of probability measures on Euclidean space. I will also discuss the well-posedness of this limit equation, the study of which seems to escape the usual techniques for infinite-dimensional Hamilton-Jacobi equations.

 

 

棋牌室赚钱吗| 百家乐官网注码投注论坛| 大发888出纳柜台 在线| 百家乐三多注码法| 太阳城 娱乐城| 澳门百家乐官网规则| 百家乐开放词典新浪| 大发888官网 平台| 百家乐官网那个平台好| 宝博百家乐娱乐城| 林甸县| 百家乐官网游戏什么时间容易出对 | 娱乐网百家乐官网的玩法技巧和规则| 百家乐游戏的玩法| bet365备用器| 百家乐官网真人游戏| 赌球开户| 火命与金命做生意| 百家乐开户送彩网址| 娱乐城注册送体验金| 百家乐官网游戏什么时间容易出对| 金都娱乐城真人娱乐| 1月24进房子风水好吗| 澳门百家乐官网| 做生意摆放老虎好不好 | 百家乐官网赌场软件| 362百家乐的玩法技巧和规则| 百家乐官网开发软件| 大发888娱乐城新澳博| 德晋百家乐官网的玩法技巧和规则| 开棋牌室赚钱吗| 利记百家乐现金网| 望谟县| 百家乐破解仪| 大发百家乐官网现金| 大发888娱乐场网址| 方形百家乐官网筹码| 欢乐谷线上娱乐| 自贡百家乐赌场| 百家乐官网扑克筹码| 上游棋牌下载|