百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

On the Borel summability of formal solutions of certain higher-order linear ordinary differential equations

Dr. Gerg? Nemes
Date & Time
21 Nov 2023 (Tue) | 10:00 AM - 11:00 AM
Venue
Y5-203, Yeung Kin Man Academic Building

ABSTRACT

We will consider a class of $n$th-order linear ordinary differential equations with a large parameter $u$. Analytic solutions of these equations can be described by (divergent) formal series in descending powers of $u$. We shall demonstrate that, given mild conditions on the potential functions of the equation, the formal solutions are Borel summable with respect to the parameter $u$ in large, unbounded domains of the independent variable. We will establish that the formal series expansions serve as asymptotic expansions, uniform with respect to the independent variable, for the Borel re-summed exact solutions. Additionally, the exact solutions can be expressed using factorial series in the parameter, and these expansions converge in half-planes, uniformly with respect to the independent variable. To illustrate our theory, we apply it to a third-order Airy-type equation.

 

做生意摆放的招财物件| 百家乐变牌桌| 菲律宾百家乐官网娱乐平台| 威尼斯人娱乐城真人赌博| 最好的百家乐官网博彩网站| 易胜博百家乐娱乐城| bet365彩票| 澳门百家乐战法| 百家乐官网书| 瑞丰国际娱乐城| 百家乐官网平一直压庄| 百家乐官网澳门百家乐官网| 大发888下载 df888gfxzylc8| 海立方百家乐海立方| 百家乐官网群html| 网上真钱麻将| 在线百家乐作| 百家乐投注软件有用吗| 什么是百家乐官网的大路| 湘潭县| 百家乐波音独家注册送彩| 百家乐下注稳赢法| 百家乐官网五湖四海娱乐网| 永福县| 大发888官方下载 网站| 百家乐牌路分析仪| 百家乐官网娱乐网网77scs| 南和县| 网上真钱赌博网站| 零点棋牌下载| 全讯网a3322| 嘉禾百家乐的玩法技巧和规则| 网络百家乐模拟投注| 下三元八运24山详解| 蓝盾百家乐官网代理| 百家乐官网21点游戏| 天健棋牌大厅下载| 太原百家乐的玩法技巧和规则| 百家乐游戏类型| 真人百家乐官网赌博技巧| 大东方百家乐官网游戏|