百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

A control variate method driven by diffusion approximation

Dr. Laurent Mertz
Date & Time
24 Mar 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

We present a control variate estimator for a quantity of interest that can be expressed as the expectation of a function of a random process, that is itself the solution of a differential equation (or a variational inequality) driven by fast mean-reverting ergodic random forces. The control variate is built with the same function and with the limit diffusion process that approximates the original random process when the mean reversion time of the driving forces goes to 0. We propose a coupling of the original process and the limit diffusion process that gives a control variate estimator with small variance. We show that the correlation between the two processes indeed goes to 1 when the mean reversion time goes to 0 and we quantify the convergence rate, which allows us to characterize the variance reduction of the proposed control variate estimator. The efficiency of the method is illustrated on a few examples.

Registration

https://cityu.zoom.us/meeting/register/tJUrcumqrTgiE9SmgKZWn8pvZ0e_1qZXcYO-

[Zoom link will be provided via email after registration.]

百家乐官网分析仪博彩正网 | 什么叫百家乐官网的玩法技巧和规则| 百家乐官网园天将| 美国太阳城养老社区| 钱隆百家乐官网破解版| 大发888提款之后多久到账| 香港六合彩报码| 百家乐博彩技巧视频| 圣淘沙百家乐官网现金网| 永利百家乐赌场娱乐网规则| 百家乐官网五星宏辉怎么玩| 大发888真钱下载| 顶尖娱乐城开户| 永嘉县| 百家乐游戏单机牌| 壹贰博百家乐官网娱乐城| 大发888优惠红利代码| 金冠百家乐娱乐城| 溧水县| 大发888娱乐城客服电话| 做生意的风水朝向| 太阳城百家乐官网娱乐官方网| 蒙特卡罗国际网址| V博百家乐的玩法技巧和规则| 百家乐官网桌子黑色| 娱乐城开户送现金| 百家乐网上真钱娱乐场开户注册| 百家乐路的看法| 百家乐官网真人游戏赌场娱乐网规则 | 宁化县| 六合彩网上下注| 威尼斯人娱乐平台注册| 澳门百家乐网上直赌| 百家乐如何计算| 百家乐de概率| 运城百家乐官网的玩法技巧和规则| 易发娱乐| 998棋牌游戏下载| 财神娱乐城怎么样| 大发888游戏平台黄埔网| 新全讯网3344111|