百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

澳门百家乐官网实战| 百家乐赌博破解| 合川市| 百家乐官网娱乐平台真人娱乐平台 | 百家乐官网投注外挂| 澳门百家乐怎洋赢钱| 博狗开户| 玩百家乐官网优博娱乐城| 百家乐投注哪个信誉好| 网上真钱赌博网站| 百家乐注码方法| 百家乐规则| 网上百家乐大赢家| 新2百家乐官网娱乐城| 网上玩百家乐的玩法技巧和规则| 百家乐官网的弱点| 至尊百家乐官网娱乐| 大发888手机版亚洲城| 路冲铺面能做生意吗| 黄金城娱乐城| 任我赢百家乐软件中国有限公司| 百家乐官网视频地主| 天博百家乐娱乐城| 百家乐官网api| 金狮娱乐| 澳门百家乐博| 环球百家乐官网娱乐城| 昆山市| 大发888官方下| 百家乐官网娱乐城博彩通博彩网 | 神木县| 大发888游戏平台 df888ylcxz46 | 百家乐扑克牌手机壳| 网上百家乐官网是真是假天涯论坛| 大发888官方 hplsj| 百家乐闲庄概率| 百家乐官网翻天快播粤语| 网络棋牌游戏平台| 百家乐赢钱| 属鼠做生意办公桌摆貔貅好不好 | 澳门玩百家乐赢1000万|