百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Convexification Numerical Method for a Coefficient Inverse Problem for the Riemannian Radiative Transfer Equation

Professor Mikhail V. Kilbanov
Date & Time
17 May 2023 (Wed) | 11:00 AM - 12:00 PM
Venue
Online via Zoom
Registration Link: https://cityu.zoom.us/meeting/register/tJIudOCoqDojEtTSnmFHPxvZSVuBmAmeOPSn

ABSTRACT

The convexification method of the presenter is the single numerical method with the global convergence property for coefficient inverse problems with non-overdetermined data. It is applicable to a broad class of Coefficient Inverse Problems, The key is the Carleman Weight Function, which is involved in the resulting cost functional. We will present this method for a Coefficient Inverse Problem for the radiative transport equation (co-authors Professor Jingzhi Li and Doctor Zhipeng Zhang). Next, we will present both Holder and Lipschitz stability estimates for a Coefficient Inverse Problem for the parabolic equation with the final overdetermination. Finally, we will present Lipschitz stability estimate for a problem of Mean Field Games. If time will allow, then we will discuss other results, which we have recently obtained for other problems of mean field games, see five most recent preprints at https://arxiv.org/search/?query=Klibanov&searchtype=all&source=header

光山县| 菲律宾百家乐官网赌场娱乐网规则 | 百家乐游戏唯一官网网站| 新全讯网777| 娱乐城开户送钱| 百家乐官网单注打法| 新百家乐官网庄闲路单图记录| 百家乐代理打| 大发888游戏平台 46| 百家乐官网注册送彩金平台| 大发888吧| 百家乐官网网络投注| 澳门百家乐博彩网| 六合彩预测| 单耳房做生意的风水| 百家乐赌机厂家| 阳新县| 全讯网vc8888.com| 博彩百家乐官网龙虎| 游戏机百家乐的技巧| 网上百家乐官网靠谱吗| 百家乐赌场程序| 百家乐真人娱乐场开户注册| 678百家乐官网博彩赌场娱乐网规则 | 百家乐视频游戏金币| 太阳百家乐娱乐| 澳门百家乐官网真人版| 威尼斯人娱乐城 104| 大发888备用地址| 钱隆百家乐官网的玩法技巧和规则 | 百家乐板路| 百家乐官网最好打法与投注| 申扎县| 永靖县| 新葡京国际娱乐城| 至尊百家乐20130201| 百家乐官网游戏机分析仪| 澳门百家乐规则| 天空娱乐城| 高级百家乐出千工具| 百家乐官网风云论坛|