百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Empirical approximation to invariant measures for McKean-Vlasov processes

Professor Dai KU
Date & Time
30 Nov 2022 (Wed) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

This work obtains  that, under a monotonicity condition, the invariant probability measure of a McKean-Vlasov process can be approximated by weighted empirical measures of some processes including itself. These processes are described by distribution dependent or empirical measure dependent stochastic differential equations constructed from the equation for the McKean-Vlasov process. Convergence of empirical measures is characterized by upper bound estimates for their Wasserstein distance to the invariant measure. The theoretical results are demonstrated via a mean-field Ornstein-Uhlenbeck process.

 

 

玩机器百家乐心得| 百家乐任你博赌场娱乐网规则| 百家乐官网技巧看| 足球百家乐官网投注网出租| 千亿国际| 致胜百家乐软件| 五华县| 五张百家乐的玩法技巧和规则| 百家乐红桌布| 百家乐官网筹码片| 百家乐官网娱乐城会员| 大发888bet娱乐场下载| 澳门百家乐海星王娱乐城| 百家乐官网览| 六合彩聊天室| 澳门百家乐走势图| 百家乐官网投注网址| 88娱乐城2官方网站| 百家乐博赌城| 杨筠松 24山| 打百家乐官网最好办法| 澳门赌场着装| 郑州百家乐的玩法技巧和规则 | 百家乐真钱游戏下载| 怎样玩百家乐官网的玩法技巧和规则 | 百家乐打劫法| 榆次百家乐官网的玩法技巧和规则 | 商南县| 德州扑克发牌员| 百家乐龙虎玩| 百家乐投注技巧球讯网| 百家乐官网破战| 澳门百家乐官网娱乐城送彩金| 大发888官网df888| 路劲太阳城怎么样| 沙龙百家乐娱乐城| 线上百家乐开户| 金赞百家乐现金网| 网上百家乐官网试玩网址| 新花园百家乐官网的玩法技巧和规则| 百家乐官网桌现货|