百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Finite element schemes and mesh smoothing for geometric evolution problems

Prof. Bjorn STINNER
Date & Time
20 Mar 2025 (Thu) | 05:00 PM - 06:00 PM
Venue
B5-311 Yeung Kin Man Academic Building

ABSTRACT

Geometric evolutions can arise as part of reduced models or fundamental building blocks in various applications with moving boundaries and time-dependent domains, such as grain boundaries in materials or deforming cell boundaries. Mesh-based methods require adaptation and smoothing, particularly in the case of strong deformations. We consider finite element schemes based on classical approaches for geometric evolution equations but augmented with the gradient of the Dirichlet energy or a variant of it, which is known to produce a tangential mesh movement beneficial for the mesh quality. We focus on the one-dimensional case, where convergence of semi-discrete schemes can be proved, and discuss two cases. For networks forming triple junctions, it is desirable to keep the impact any additional, mesh smoothing terms on the geometric evolution as small as possible, which can be achieved with a perturbation approach. Regarding the elastic flow of curves, the Dirichlet energy can serve as a replacement of the usual penalty in terms of the length functional in that, modulo rescaling, it yields the same minimizers in the long run.

 

 

澳门百家乐奥秘| 网上赌百家乐官网正规吗| 千亿国际| 明光市| 喜来登百家乐官网的玩法技巧和规则| 百家乐游戏下裁| 大发888我发财官网| 百家乐官网走势图研究| 百家乐能作弊吗| 大发888体育场| 元游棋牌游戏下载| 浙江省| 皇冠百家乐的玩法技巧和规则| 香河县| 顺昌县| 百家乐规则以及玩法| 最好的百家乐官网论坛| 李雷雷百家乐的奥妙| 百家乐官网翻天粤语qvod| 百家乐百胜注码法| 利来国际城| 开店做生意的风水| 金川县| 百家乐威尼斯人| 博彩网站排行| 百家乐娱乐城有几家| 百家乐怎么玩| 百家乐声音不印网| 百家乐官网软件官方| 反赌百家乐的玩法技巧和规则| 百家乐官网波音平台有假吗| 百家乐透明发牌靴| 百家乐官网路单破解软件| 大发888官网官方下载| 大发888真钱娱乐城下载| 百家乐官网国际娱乐场开户注册 | 怎样赢百家乐的玩法技巧和规则| 百家乐视频双扣| 可以玩百家乐官网的博彩网站 | 曼哈顿百家乐娱乐城| 百家乐官网打水论坛|