百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Lagrangian Approximations and Computations of Front Speeds in Chaotic Flows

Dr Zhiwen ZHANG
Date & Time
14 Dec 2022 (Wed) | 04:00 PM - 05:00 PM
Venue
G5-314, Yeung Kin Man Academic Building

ABSTRACT

We study the propagation speeds of reaction-diffusion-advection (RDA) fronts in time-periodic cellular and chaotic flows with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We first apply the variational principle to reduce the computation of KPP front speeds to a principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic coefficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to compute the principal eigenvalue through the Feynman-Kac formula. We also obtain convergence analysis for the proposed numerical method. Finally, we present numerical results to demonstrate the accuracy and efficiency of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows, especially the time-dependent Arnold-Beltrami-Childress (ABC) flow and time-dependent Kolmogorov flow in three-dimensional space. We also report some recent progress in developing a Deep Particle method to learn invariant measures by a deep neural network minimizing Wasserstein distance on data generated from Lagrangian particle methods.

 

 

百家乐官网投注技巧公式| tt百家乐官网的玩法技巧和规则| 最可信百家乐官网娱乐城| 百家乐平注法到65688| 马尔康县| 最新百家乐网评测排名| 台山市| 百家乐官网如何打轮盘| 太阳城代理| 真人百家乐的玩法技巧和规则| 百家乐官网视频交流| 百家乐投资心得| 太阳城百家乐官网筹码租| 百樂坊百家乐的玩法技巧和规则 | 百家乐分析网| 真人百家乐官网软件云南景 | 百家乐佛牌| 澳门百家乐官网单注下注| 三易博娱乐| 威尼斯人娱乐城代理合作| 百家乐官网现金网平台排名 | 百家乐娱乐官方网| 美高梅百家乐官网娱乐城| 名仕国际棋牌下载| 百家乐休闲游戏| 美高梅百家乐官网娱乐城| 大发888游戏下载中心| 百家乐官网赢钱秘籍鹰| 香港六合彩开奖历史记录| 尊龙百家乐官网娱乐城| 百家乐官网龙虎斗扎金花| 六合彩开奖日期| 大发888怎么申请账号| 网上百家乐官网游戏玩法| 网上百家乐官网投注法| 百樂坊百家乐的玩法技巧和规则 | 格龙24山五行| 百家乐官网路子技巧| 百家乐官网有真假宝单吗| 开心8娱乐城| 百家乐如何骗人|