百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Linear quadratic mean field games and their asymptotic solvability

Professor HUANG Minyi
Date & Time
11 Feb 2022 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Abstract

We consider linear quadratic (LQ) mean field games (MFGs) and study their asymptotic solvability problems. Roughly, we attempt to answer these questions: When does a sequence of games, with increasing populations, have “well behaved’’ centralized solutions? And how to characterize a necessary and sufficient condition for such nice solution behaviors. We start with a model of homogeneous agents and develop a re-scaling technique for analysis. An important issue in MFGs is the performance of the obtained decentralized strategies in an N-player model, and one usually can obtain an O(N^{-1/2})- Nash equilibrium. By our approach we can improve the estimate from O(N^{-1/2}) to the tightest bound O(1/N).

We will further generalize to a major player model and clarify the relation of different solutions existing in the literature. Finally, this asymptotic solvability formulation can be extended to mean field social optimization.

Zoom Link

https://cityu.zoom.us/j/97232939340?pwd=VU9mNVVNZUNVZDc3NllUTldPN1hNUT09

Meeting ID: 972 3293 9340

Password: 151920

大发888网页版登陆| 库尔勒市| 泌阳县| 芒康县| 百家乐官网如何捕捉长龙| 百家乐官网棋牌游戏开发| 百家乐官网不倒翁注码| 12倍百家乐秘籍| 百家乐庄闲客户端| 百家乐博百家乐的玩法技巧和规则| 新濠百家乐的玩法技巧和规则| 博彩吧| 百家乐官网游戏机高手| 大佬百家乐官网娱乐城| 可以玩百家乐的博彩网站| 大发888娱乐真钱游戏| 金都百家乐官网现金网| 易胜博百家乐娱乐城| 百家乐真人视频出售| 大发888娱乐城加速器| 仙游县| 网上百家乐好玩吗| 利来国际城| 巴黎百家乐地址| 百家乐官网连开6把小| 权威百家乐信誉网站| 百家乐官网打线| 大发888网站多少| 百家乐官网必胜课| 菲利宾百家乐现场| 百家乐官网1326投注| 7位百家乐扑克桌| 木棉百家乐官网的玩法技巧和规则 | 百家乐官网过滤软件| 威尼斯人娱乐城玩百家乐| 百家百家乐官网视频游戏世界 | 传奇百家乐的玩法技巧和规则| 真人百家乐官网澳门娱乐城| 百家乐视频游戏中心| 百家乐官网赌经| 平顶山市|