百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Low-bit representations of oversampled signal expansions and neural networks

Professor Alexander M. Powell
Date & Time
07 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online Zoom

ABSTRACT

We discuss mathematical aspects of how to digitally represent information. Redundancy or oversampling is an important ingredient in many types of signal representations. For example, in the classical Shannon sampling theorem, redundancy provides design flexibility and robustness against noisy measurements. We shall discuss analog-todigital conversion for redundant signal representations. We show error bounds which quantify how well different quantization methods, such as consistent reconstruction and Sigma-Delta quantization, utilize redundancy. Lastly, we discuss the problem of training neural networks with low-bit weights; we consider an approach based on stochastic Markov gradient descent (SMGD) and prove that the method performs well both theoretically and numerically.

Registration URL:

https://cityu.zoom.us/meeting/register/tJcrd--vqz4sGND_bAdFEMq8Ssj-UIrFxOwE

百家乐官网扎金花现金| 百家乐真人游戏娱乐网| 至尊百家乐官网qvod| 威尼斯人娱乐网送38元彩金| 怎么赢百家乐官网的玩法技巧和规则| 百家乐象棋玩法| 八大胜开户| 百家乐官网双龙出| 大发888娱乐网| 百家乐官网网站源码| 网上百家乐是假| 至尊百家乐官网2012| 威尼斯人娱乐城真钱赌博| 百家乐官网技术方式| 百家乐ipone| 百家乐如何视频| 狮威国际娱乐| 百家乐的庄闲概率| 新葡京官网| 神州百家乐的玩法技巧和规则| 百家乐官网澳门有网站吗| 任我赢百家乐软件中国有限公司| 哪里有百家乐官网赌博网站| 博狗娱乐城注册| 百家乐官网社区| 东城区| 职业赌百家乐技巧| 百家乐官网软件l柳州| 免邮百家乐布桌| 新东方百家乐官网的玩法技巧和规则| 大发888 大发888| 至尊百家乐官网娱乐场开户注册 | 大发888下载不了| 温州市百家乐官网鞋业有限公司| 洛隆县| 最好的百家乐博彩网站| 澳门百家乐官网官方网址| 本溪棋牌网| 稳赢的百家乐投注方法| 在线百家乐官网3d| 百家乐官网送彩金平台|