百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Modeling Dependence: From Copulas to Neural Networks

Dr. Marius Hofert
Date & Time
28 Apr 2022 (Thu) | 10:00 AM - 11:00 AM
Venue
Online via ZOOM

Copulas became popular in finance and insurance for modeling stochastic dependence. However, classical copula models often fail to provide adequate dependence models for real data. We suggest a new dependence modeling paradigm based on certain neural networks called generative moment matching networks. After a brief introduction to copula modeling, we explain why and how generative moment matching networks can replace classical copula models in a wide range of applications. We then present selected applications of this new dependence modeling approach in more detail, namely the construction of dependent quasirandom numbers (to estimate, for example, risk measures with variance reduction) and multivariate time series modeling with flexible dependence (to improve probabilistic predictions). Focus is then put on another application of generative moment matching networks in the copula modeling domain, namely model assessment and selection. The talk covers ideas from several papers of ours and aims at providing an overview over recent advances in learning dependence with neural networks.

Registration

https://cityu.zoom.us/meeting/register/tJUkfuqupjMjG91PGJNOON_Cp8DH5MzT9W3B

[Zoom link will be provided via email after registration.]

两当县| 澳门百家乐官网赢钱| 在线扎金花| 澳门百家乐官网群代理| 威尼斯人娱乐网注册送38元彩金| 大发888娱乐城 17| 百家乐官网娱乐注册就送| 长乐坊百家乐娱乐城| 38坊娱乐城| 百家乐真人秀| 百家乐官网庄闲多少| 网址百家乐官网的玩法技巧和规则| 大发888存款方式| 广州百家乐官网桌子| 大发888游戏场下载| 菲律宾百家乐官网娱乐| 大发888娱乐亚洲| 重庆百家乐官网的玩法技巧和规则| 大丰收娱乐城官网| 百家乐官网论坛| 利来国际注册| 实战百家乐官网十大取胜原因百分百战胜百家乐官网不买币不吹牛只你能做到按我说的.百家乐官网基本规则 | 澳门百家乐官网群官网| 网络百家乐破| 网页百家乐官网官网| 博狗娱乐| 电脑百家乐玩| 赌场百家乐官网视频| 宝胜娱乐场| 大发888真钱娱乐| 百家乐官网画面| 新百家乐官网.百万筹码| 沙巴百家乐官网现金网| 威尼斯人娱乐平台| 百家乐庄闲必胜规| 利澳百家乐官网的玩法技巧和规则| 永凡棋牌游戏| 最好的百家乐博彩公司| 百家乐官网技巧介绍| 迪威网上娱乐| 冠赌球网|