百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

No Exceptional Words for Site Percolation on Z^3

Dr Pierre NOLIN
Date & Time
29 Jan 2019 (Tue) | 04:30 PM - 05:30 PM
Venue
2306, Li Dak Sum Yip Yio Chin Academic Building (LI)
City University of Hong Kong

Abstract :

Bernoulli percolation is a model for random media introduced by Broadbent and Hammersley in 1957. In this process, each vertex of a given graph is occupied or vacant, with respective probabilities p and 1-p, independently of the other vertices (for some parameter p). It is arguably one of the simplest models from statistical mechanics displaying a phase transition as the parameter p varies, i.e. a drastic change of behavior at some critical value p_c, and it has been widely studied. Benjamini and Kesten introduced in 1995 the problem of embedding infinite binary sequences into a Bernoulli percolation configuration, known as percolation of words. We give a positive answer to their Open Problem 2: for percolation on Z^3 with parameter p=1/2, we prove that almost surely, all words can be embedded. We also discuss various extensions of this result. This talk is based on a joint work with Augusto Teixeira (IMPA) and Vincent Tassion (ETH Zürich).

缅甸百家乐网上投注| 百家乐官网自动投注| 大发888明星婚讯| 百家乐官网的嬴钱法| 澳门百家乐官网经| 百家乐怎样下注| 大发888娱乐场大发888娱乐场| 百家乐官网网址是多少| 百家乐官网桌布| 百家乐龙虎斗等| 大发888真钱娱乐下载| 博狗娱乐城注册| 百家乐官网看不到视频| 百家乐跟路技巧| 威尼斯人娱乐| 百家乐官网龙虎台布| 德州扑克 教学| 属虎和属猴牛人做生意| 百家乐网开服表| 百家乐官网洗码| 博九百家乐官网的玩法技巧和规则 | 百家乐能破解| 狮威百家乐官网娱乐城| 百家乐电投软件| 余杭棋牌世界| 乐天堂百家乐官网娱乐| 百家乐都是什么人玩的| 金博士百家乐官网娱乐城| 百家乐网络游戏信誉怎么样| 安徽棋牌游戏中心| 百家乐对打反水| 优博娱乐网站| 澳门百家乐官网官网| 998棋牌游戏| 百家乐注码投注论坛| 卢克索百家乐的玩法技巧和规则 | 真人百家乐官网免费送钱| 豪龙国际娱乐| 网上百家乐官网是现场吗| 威尼斯人娱乐官方| 百家乐官网棋牌正式版|