百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

On nonconforming approximations for a class of semilinear problems

Mr. Benedikt Gr??le
Date & Time
01 Mar 2024 (Fri) | 04:00 PM - 05:00 PM
Venue
Y5-204, Yeung Kin Man Academic Building

ABSTRACT

The a priori and a posteriori error analysis in [1, 3] establishes a unified analysis for different finite element approximations to regular roots of nonlinear partial differential equations with a quadratic nonlinearity. A smoother in the source and nonlinearity enables quasi-best approximations in [3] under a set of hypotheses that guarantees the existence and local uniqueness of a discrete solutions by the Newton-Kantorovich theorem. Related assumptions on some computed approximation close to a regular root allow the reliable and efficient a posteriori error analysis [1] for a general class of rough sources introduced in [2]. Applications include nonconforming discretisations for the von Kármán plate and the stream-vorticity formulation of the stationary Navier-Stokes equations in 2D by the Morley, two versions of discontinuous Galerkin, C0 interior penalty, and WOPSIP methods. The talk presents joint work within the working groups of Prof. C. Carstensen and Prof. N. Nataraj.

百家乐官网规律打| 333娱乐城| 百家乐娱乐备用网址| 上海博彩生物科技有限公司| 澳门百家乐官网开户投注| 杨公24山日课应验诀| 娱乐城注册送现金| 百家乐破解视频| 保时捷娱乐| 百家乐游戏规则玩法| 百家乐官网网上技巧| 七胜百家乐娱乐网| 百家乐官网稳赢投注方法| 百家乐庄闲和赢率| 百家乐官网平台在线| 大发888娱乐场出纳| 百家乐官网论坛博彩拉| 百家乐怎么开户| 圣淘沙百家乐官网游戏| 免费百家乐游戏下| 布加迪百家乐官网的玩法技巧和规则| 同乐城娱乐| 百家乐官网视频挖坑| 玩百家乐有何技巧| 百家乐官网赌博赌博平台| 大发888大发888娱乐游戏| 24山向阴阳图| 博九百家乐官网娱乐城| 大发888方官| 凯旋门百家乐游戏| 百家乐官网视频桌球| 大发888备用| 缅甸百家乐视频| 喜达百家乐官网的玩法技巧和规则| 真人赌博网站| 威尼斯人娱乐场内幕| 百家乐使用技法| 7人百家乐官网中号桌布| 通州区| 美高梅娱乐城网址| 新全讯网网址g5vvv|