百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

On nonconforming approximations for a class of semilinear problems

Mr. Benedikt Gr??le
Date & Time
01 Mar 2024 (Fri) | 04:00 PM - 05:00 PM
Venue
Y5-204, Yeung Kin Man Academic Building

ABSTRACT

The a priori and a posteriori error analysis in [1, 3] establishes a unified analysis for different finite element approximations to regular roots of nonlinear partial differential equations with a quadratic nonlinearity. A smoother in the source and nonlinearity enables quasi-best approximations in [3] under a set of hypotheses that guarantees the existence and local uniqueness of a discrete solutions by the Newton-Kantorovich theorem. Related assumptions on some computed approximation close to a regular root allow the reliable and efficient a posteriori error analysis [1] for a general class of rough sources introduced in [2]. Applications include nonconforming discretisations for the von Kármán plate and the stream-vorticity formulation of the stationary Navier-Stokes equations in 2D by the Morley, two versions of discontinuous Galerkin, C0 interior penalty, and WOPSIP methods. The talk presents joint work within the working groups of Prof. C. Carstensen and Prof. N. Nataraj.

豪博娱乐城| 德州扑克概率计算器| 真人百家乐官网口诀| 366百家乐官网娱乐城| 四方百家乐官网的玩法技巧和规则| 大发888娱乐场下载samplingid112| 赌百家乐官网咋赢对方| 玩百家乐掉房| 百家乐博娱乐网提款速度快不| 长春市| 百家乐官网五湖四海娱乐网| 大发888支付宝代充| 大发888娱乐城出纳柜台| 澳门百家乐官网怎么玩| 网页百家乐官网游戏| 老虎机的规律| 太原百家乐官网招聘| 大发888娱乐软件| 网上百家乐作弊下载| 赌场百家乐是如何| 百家乐官网二人视频麻将| 为什么百家乐玩家越来越多选择网上百家乐 | 仙桃市| 大发888娱乐城赢钱| 百家乐现场投注平台| 百家乐玩法注意事项| 百家乐官网博彩平| 百家乐官网的必赢方法| 赌博博彩论坛| 澳门博彩8345cc| 百家乐防伪筹码套装| 百家乐官网游戏合法吗| 娱乐城送白菜| 百家乐高人玩法| 天猫国际娱乐城| 大发888真钱娱乐网| 求购百家乐程序| 3U百家乐官网娱乐城| 大发888游戏官方下| 游戏机百家乐的技术| 百家乐看炉子的方法|