百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Second-order flow approach for solving variational problems

Prof. Ziqing XIE
Date & Time
07 Feb 2025 (Fri) | 10:30 AM - 11:30 AM
Venue
B5-310, Yeung Kin Man Academic Building

ABSTRACT

In this talk, we introduce a so-called second-order flow approach, a novel computational framework based on dissipative second-order hyperbolic partial differential equations (PDEs) designed to tackle variational problems. Our focus lies on scenarios where energy functionals are nonconvex and may entail nonconvex constraints. This motivation stems from practical applications such as finding stationary points of Ginzburg-Landau energy in phase-field modeling, Landau-de Gennes energy of the Q-tensor model for liquid crystals, as well as simulating ground states for Bose-Einstein condensates. We explore both the analytical and numerical aspects of this novel framework, showing how discretizing the PDEs leads to original numerical methodologies for addressing variational problems. Analytically, for a class of unconstrained nonconvex variational problems, we demonstrate the convergence of second-order flows to stationary points and establish the well-posedness of the second-order flow equations. Our numerical findings underscore the superiority of second-order flow methods over gradient flow methods across all discussed application scenarios.

 

百家乐官网高手和勒威| 澳门百家乐代理| 个人百家乐官网策略| 百家乐官网娱乐平台开户| 百家乐交流群号| 威尼斯人娱乐城返佣| 荣昌县| 百家乐官网牌路分析仪| 同乐城百家乐现金网| 元游棋牌游戏大厅| 百家乐官网稳赢投注| 24山方向上| 大发888亚洲城娱乐城| 百家乐官网信誉博彩公司| 大发888老虎机手机版| 百家乐官网龙虎台布价格| 百家乐破解的方法| 凯旋门百家乐官网技巧| 大发888游戏代冲省钱技巧| 涂山百家乐官网的玩法技巧和规则 | 大发888游戏平台403| 线上百家乐信誉| 全讯网网址| 女性做生意的风水| 西和县| 百家乐赌场详解| 澳门百家乐官网大家乐眼| 澳门百家乐真人版| 江西老虎机遥控器| 黄金城百家乐官网手机用户| 阿瓦提县| 百家乐官网公式与赌法| 大发888手机好玩吗| 娱网棋牌官方网站| 威尼斯人娱乐场it| 葡京百家乐玩法| 百家乐官网庄闲机率分析| 顶级赌场dj| 威尼斯人娱乐网网上百家乐| 百家乐长龙有几个| 澳门赌百家乐官网心法|