百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Sharp local well-posedness for quasilinear wave equations with spherical symmetry

Prof. Chengbo Wang
Date & Time
30 Jun 2023 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via Zoom
https://cityu.zoom.us/meeting/register/tJcsc-yhqTsqGNBPSWEJdr1uOEDUHERj1N9P

ABSTRACT

In this talk, I will present a sharp local well-posedness result for spherically symmetric solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three or higher. Our approach is based on Morawetz type local energy estimates with fractional regularity for linear wave equations with variable C^1 coefficients, which rely on multiplier method, weighted Littlewood-Paley theory, duality and interpolation. Together with weighted linear and nonlinear estimates (including weighted trace estimates, Hardy's inequality, fractional chain rule and fractional Leibniz rule) which are adapted for the problem, the well-posed result is proved by iteration. In addition, our argument yields almost global existence for n=3 and global existence for dimension 4 and higher, when the initial data are small, spherically symmetric with almost critical Sobolev regularity.

电玩百家乐游戏机路单| 大发888九州娱乐城| 鲨鱼百家乐游戏平台| 大发888下载删除| 正品百家乐官网的玩法技巧和规则| 德州扑克技巧视频| 百家乐官网娱乐城新闻| 百家乐桌子黑色| 百家乐官网有没有单机版的 | 真人百家乐破解软件下载| 百家乐官网视频美女| 百家乐必胜打| 网上现金游戏网 | 百家乐官网网上娱乐场开户注册| bet365提款多久到账| 大玩家百家乐游戏| 在线百家乐官网代理| 太阳城百家乐公司| 戒掉百家乐官网的玩法技巧和规则 | 打百家乐官网最好办法| 赤城县| 澳门皇冠娱乐城| 澳门百家乐官网赌客| 国外博彩网站| 百家乐网上玩法| 利都百家乐官网国际娱乐场开户注册| 百家乐娱乐注册就送| 功夫百家乐官网的玩法技巧和规则 | 百家乐中庄闲比例| 黄金城百家乐官网手机版| 百家乐官网游戏真钱游戏| 娱乐城申请送奖金| 百家乐必胜方法如果你还想继续不看可能后悔一生 | 汶川县| 老虎机作弊器| 澳门百家乐游戏玩法| 伟博百家乐现金网| 海立方百家乐官网客户端| 鲁山县| 亚斯博彩网| 连山|