百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Sharp local well-posedness for quasilinear wave equations with spherical symmetry

Prof. Chengbo Wang
Date & Time
30 Jun 2023 (Fri) | 10:00 AM - 11:00 AM
Venue
Online via Zoom
https://cityu.zoom.us/meeting/register/tJcsc-yhqTsqGNBPSWEJdr1uOEDUHERj1N9P

ABSTRACT

In this talk, I will present a sharp local well-posedness result for spherically symmetric solutions to quasilinear wave equations with rough initial data, when the spatial dimension is three or higher. Our approach is based on Morawetz type local energy estimates with fractional regularity for linear wave equations with variable C^1 coefficients, which rely on multiplier method, weighted Littlewood-Paley theory, duality and interpolation. Together with weighted linear and nonlinear estimates (including weighted trace estimates, Hardy's inequality, fractional chain rule and fractional Leibniz rule) which are adapted for the problem, the well-posed result is proved by iteration. In addition, our argument yields almost global existence for n=3 and global existence for dimension 4 and higher, when the initial data are small, spherically symmetric with almost critical Sobolev regularity.

百家乐庄闲出现几率| 威尼斯人娱乐城正规吗| 金濠国际网| 百家乐高手打| 查找百家乐群| 娱乐城金赞| 赌百家乐官网波音备用网| 玩百家乐官网最好方法| 百家乐官网稳赢战术技巧| 百家乐庄河闲的赌法| 免费百家乐追号工具| 大嘴棋牌官方下载| 注册娱乐城送彩金| 杭锦旗| 百家乐官网如何必胜| 八运24山阴阳| 大发888娱乐城取款| 百家乐官网策略| 百家乐能赢到钱吗| bet365存款| 百家乐官网斗地主下载| 百家乐返水1.2不限| 棋牌游戏平台排行榜| 赌场百家乐官网玩法介绍| 网络百家乐官网证据| 状元百家乐的玩法技巧和规则| 香港六合彩现场直播| 试玩百家乐官网网| 威尼斯人娱乐城正规吗| 百家乐官网怎么玩能赢钱| 澳门百家乐打法百家乐破解方法 | 百家乐官网筹码片| 百家乐娱乐代理| 百家乐官网视频游戏挖坑| 百家乐平玩法lm0| 顶级赌场代理| 澳门百家乐官网哪家信誉最好| 太阳百家乐官网娱乐| 百家乐五湖四海娱乐网| 百家乐官网信誉好的平台| 百家乐新送彩金|