百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

Dr Jing Zhang
Date & Time
16 Aug 2023 (Wed) | 10:30 AM - 11:30 AM
Venue
Online via Zoom
https://nus-sg.zoom.us/j/87645650702?pwd=OWUyODF5alBFSExPL0pzcEJIblh0Zz09

ABSTRACT

In this paper, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and Souganidis (Indianna Univ. Math.J., 38(1989), pp.~293-314) and the seminal work by Buckdahn and Li (SIAM J. Control Optim., 417 (2008), pp.~444-475), the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively. A stability property of viscosity solutions is also proved. Under certina additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.

电脑百家乐官网的玩法技巧和规则| 百家乐官网千术道具| 六合彩即时开奖| 百家乐官网投注注技巧| 星港城百家乐娱乐城| bet365是否合法| 现金百家乐官网赌法| 百家乐外套| 德州扑克高级技巧| 狮威国际娱乐| 百家乐赢钱秘密| 大发888官方6222.co| 百家乐官网开户平台| 百家乐投注网出租| 在线百家乐官网3d| 沙龙国际在线| 百家乐怎么才会赢| 大发888com| 百家乐官网怎么玩请指教| 大发888官方 黄埔| 百家乐官网大西洋| 新全讯网768866| 太原百家乐官网的玩法技巧和规则 | 百家乐如何打轮盘| 百家乐官网是否有路子| 百家乐设备电子路| 网络百家乐官网赌博赢钱| 大发888是真的吗| 游戏机百家乐官网的玩法技巧和规则| 浦北县| 百家乐变牌桌| 小孟百家乐官网的玩法技巧和规则| 波音百家乐官网游戏| 新锦江百家乐的玩法技巧和规则| 百家乐官网2棋牌作弊软件| 宜兰县| 百家乐线路图分析| 百家乐官网筹码14克| 漳浦县| 大发88817| sz全讯网网站xb112|