百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Stochastic Differential Games with Random Coefficients and Stochastic Hamilton-Jacobi-Bellman-Isaacs Equations

Dr Jing Zhang
Date & Time
16 Aug 2023 (Wed) | 10:30 AM - 11:30 AM
Venue
Online via Zoom
https://nus-sg.zoom.us/j/87645650702?pwd=OWUyODF5alBFSExPL0pzcEJIblh0Zz09

ABSTRACT

In this paper, we study a class of zero-sum two-player stochastic differential games with the controlled stochastic differential equations and the payoff/cost functionals of recursive type. As opposed to the pioneering work by Fleming and Souganidis (Indianna Univ. Math.J., 38(1989), pp.~293-314) and the seminal work by Buckdahn and Li (SIAM J. Control Optim., 417 (2008), pp.~444-475), the involved coefficients may be random, going beyond the Markovian framework and leading to the random upper and lower value functions. We first prove the dynamic programming principle for the game, and then under the standard Lipschitz continuity assumptions on the coefficients, the upper and lower value functions are shown to be the viscosity solutions of the upper and the lower fully nonlinear stochastic Hamilton-Jacobi-Bellman-Isaacs (HJBI) equations, respectively. A stability property of viscosity solutions is also proved. Under certina additional regularity assumptions on the diffusion coefficient, the uniqueness of the viscosity solution is addressed as well.

缅甸黄金赌场| 百家乐赌博现金网| 百家乐官网三号的赢法| 川宜百家乐注册号| 鼎丰娱乐城开户| 风水24山读法| bet365进不去| 百家乐赌博机原理| 星期八娱乐| 百家乐平的概率| 弥渡县| 百家乐知识技巧玩法| 注册百家乐官网送彩金 | 捷豹百家乐娱乐城| 百家乐官网和局投注法| 尊龙百家乐娱乐| 赌百家乐官网波音备用网| 百家乐群lookcc| 破战百家乐官网的玩法技巧和规则| 百家乐群121398015| 百家乐官网娱乐用品| 二八杠自行车| 百家乐破解版下载| 超级百家乐官网2龙虎斗| 红树林百家乐的玩法技巧和规则| 晓游棋牌游戏大厅下载| 百家乐官网怎么赢博彩正网 | 首席百家乐的玩法技巧和规则| 浩博真人娱乐| 真人百家乐的玩法技巧和规则| 银河国际娱乐| 七胜百家乐赌场娱乐网规则| 赌场百家乐官网怎么破解| 大发888为什么打不开| 百家乐娱乐城优惠| 赌博投注| 威尼斯人娱乐城平台打不开| 百家乐视频游戏大厅| 永利百家乐官网娱乐平台| 会东县| 多多视频棋牌游戏|