百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Skip to main content

Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry

Dr. Moritz Reintjes
Date & Time
16 Dec 2020 (Wed) | 03:00 PM - 04:00 PM
Venue
Online via ZOOM

Abstract

We resolve two problems of Mathematical Physics. First, we prove that any ?? ∞ connection ?? on the tangent bundle of an arbitrary differentiable manifold with ?? ∞ Riemann curvature can be smoothed by coordinate transformation to optimal regularity ?? ∈ ??1,?? , any ?? < ∞, (one derivative smoother than the curvature). This implies in particular that Lorentzian metrics ofshock wave solutions of the Einstein-Euler equations are non-singular---geodesic curves, locally inertial coordinates and the resulting Newtonian limit all exist in a classical sense. This result is based on a system of nonlinear elliptic partial differential equations, the Regularity Transformation equations, and an existence theory for them at the level of ?? ∞ connections. Secondly, we prove that this existence theory suffices to extend Uhlenbeck compactness from the case of connections on vector bundles over Riemannian manifolds, to the case of connections on tangent bundles of arbitrary manifolds, including Lorentzian manifolds of General Relativity.

Registration URL

https://cityu.zoom.us/meeting/register/tJwocuCtpz0pHtRREgAvv3c__6_3zB5CVaIw

[Zoom meeting link will be provided via email after registration.]

恒丰百家乐官网的玩法技巧和规则 | 真人百家乐官网视频| 百家乐高手和勒威| 大发888官方6222.com| 百家乐官网水浒传| 百家乐科学打| 百家乐官网试玩全讯网2| 海阳市| 百家乐官网送18元彩金| 大发8888备用网址| 百家乐官网顶| LV百家乐赢钱LV| 真人百家乐官网大转轮| 澳门百家乐论坛及玩法| 属马做生意坐向| 大发888m摩卡游戏| 网络百家乐骗局| 南通市| 太阳城假日酒店| 百家乐官网免费下| 阜城县| 百家乐投注网出租| 百家乐游戏怎么刷钱| 马尔康县| 网上百家乐骗钱| 百家乐官网开户就送现金| 博狗百家乐的玩法技巧和规则| 澳门百家乐官网官方网站| 娱乐城棋牌| 百家乐必胜法技巧| 扑克百家乐官网赌器| 百家乐赌场| 百家乐投注办法| 澳门百家乐官网备用网址| 玩百家乐出千方法| 百家乐官网网络赌场| 澳门百家乐官网的公式| 大发888游戏攻略| 百家乐游戏机高手| 百家乐牌数计算法| 百家乐赌博机原理|