百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Scientists Make Solar Cells Printable Like Newspapers

Researchers at City University of Hong Kong (CityUHK) have achieved a significant breakthrough in photovoltaic energy with the development of highly efficient, printable, and stable perovskite solar cells. This innovation could be a game-changer in achieving carbon neutrality and promoting sustainable development.

The new type of perovskite solar cells can be mass-produced at a speed comparable to newspaper printing, with a daily output of up to 1,000 solar panels. Owing to their flexible, semi-transparent characteristics, they can also be made into light-absorbing glass windows, realising the concept of “urban solar farms” in cities with many high-rise buildings, such as Hong Kong and Shenzhen.

Led by Lee Shau Kee Chair Professor of Materials Science,?Professor Alex Jen Kwan-yue,?the research results were published in?Nature Energy. The team demonstrated an effective strategy to enhance the long-term stability of perovskite-organic tandem solar cells. The integrated cells retain over 90% of their initial Power Conversion Efficiency (PCE) after 500 hours of operation.

The operational stability of wide-bandgap perovskites has been a challenge for scientists for over a decade. CityUHK research team addressed the issue with creative material science solutions. The team designed a series of organic redox mediators with appropriate chemical potentials to selectively reduce iodine and oxidise metals.

main 2
Perovskite photovoltaics can absorb energy even under weak indoor light.

After the perovskite device was integrated into the monolithic perovskite-organic tandem solar cell as a wide-bandgap subcell, the encapsulated tandem cell was subjected to 1-sun illumination (AM 1.5G spectrum, without a UV filter). It retained 92% of its initial PCE after 500 hours of continuous operation at ~45 °C. The team also reported record-high efficiency of 25.22% (certified 24.27%). The device also exhibited good operational stability in humid air (relative humidity, 70–80%).

Dr Wu Shengfan, a key member of the research team and the first author of the paper, said: “We were the first team to propose the use of redox and chemical synthesis methods to fundamentally solve the problem, effectively ensuring the stability of perovskite solar cells.” He pointed out that CityUHK emphasises critical thinking in nurturing doctoral students, advocating their mastery the most cutting-edge topics in the field, understanding of the biggest challenges faced, and solutions to the most complex problems.

“We are committed to creating societal impacts through innovative academic research, laying the foundation for Hong Kong and the Greater Bay Area’s competition in the emerging energy market,” said Professor Jen. He and his team also recently received a grant in the first round of funding from the Innovation and Technology Commission's Research, Academic and Industry Sectors One-plus Scheme (RAISe+ Scheme) for their new generation of printable high-efficiency perovskite photovoltaic modules. The research results will be transformed into practical applications through the start-up company HKTech Solar Limited, that will be managed by?Dr Francis Lin, a postdoctoral student of Professor Jen.

Perovskite photovoltaics can absorb energy even under weak indoor light and have mechanical flexibility. They can be integrated and applied in different scenarios, from large buildings and farms to various components of the Internet of Things. The team also plans to set up a pilot production line with annual output of 25 megawatts in Hong Kong within a year and a half and launch products for industry matching investors to test applications.

真人百家乐视频| 百家乐官网有免费玩| 百家乐的薇笑打法| 马牌娱乐城| 澳门百家乐官网手机软件| bet365娱乐场下载| 千亿娱百家乐官网的玩法技巧和规则 | 新全讯网353788| 百家乐官网发脾机| 易学24山3d罗盘App| 老虎机游戏| 荥经县| 利都百家乐国际赌场娱乐网规则| 百家乐官网破解仪恒达| 大发888 澳门赌场| 做生意适合放什么花招财| 澳门百家乐官网心得玩博| 水果机游戏在线玩| 王牌百家乐官网的玩法技巧和规则| 千亿国际娱乐城| 威尼斯人娱乐场申博太阳城| 百家乐官网黏土筹码| 免费百家乐官网规则| 免费百家乐统计工具| 百家乐视频游戏中心| 龙博娱乐城| 八大胜百家乐娱乐城| 百家乐官网里靴是什么意识| 民勤县| 老虎机上分器原理图| 帝王百家乐全讯网2| 迪威百家乐官网娱乐场| 周至县| 大发888网页版体育| 赌场百家乐投注公式| 免费百家乐官网过滤工具| 金域百家乐官网娱乐城| 战神国际娱乐平| qq德州扑克官网| 幸运水果机游戏下载| 大连百家乐商场|