
1

Generalization Analysis of CNNs for Classification
on Spheres

Han Feng, Shuo Huang, and Ding-Xuan Zhou,

Abstract—Deep learning based on deep convolutional neural
networks (CNNs) is extremely efficient in solving classification
problems in speech recognition, computer vision, and many other
fields. But there is no enough theoretical understanding about this
topic, especially the generalization ability of the induced CNN
algorithms. In this paper, we develop some generalization analysis
of a deep CNN algorithm for binary classification with data on
spheres. An essential property of the classification problem is
the lack of continuity or high smoothness of the target function
associated with a convex loss function such as the hinge loss. This
motivates us to consider the approximation of functions in the Lp
space with 1 ≤ p ≤ ∞. We provide rates of Lp-approximation
when the approximated function lies in a Sobolev space and
then present generalization bounds and learning rates for the
excess misclassification error of the deep CNN classification
algorithm. Our novel analysis is based on efficient cubature
formulae on spheres and other tools from spherical analysis and
approximation theory.

Index Terms—deep learning, convolutional neural networks,
classification problems, generalization error bounds, spherical
analysis.

I. INTRODUCTION

ABinary classification problem with an input (compact
metric) space X of instances and output space Y =

{−1, 1} of two labels aims at learning a (binary) classifier
from samples which separates the instances in X into two
classes. With a Borel probability measure ρ on Z := X × Y
governing the sampling process, the performance of a classifier
C : X → Y is assessed by the so-called misclassification
error defined as the probability of the event {(x, y) ∈ X×Y :
C(x) 6= y}, that is,

R(C) :=

∫
X×Y

I(−y, C(x))dρ = Prob{C(x) 6= y},

where I(a, b) = 1 if a = b, and 0 otherwise. The best
classifier which minimizes the misclassification error is called
a Bayes rule fc given by fc(x) = 1 if ρ(y = 1|x) ≥
ρ(y = −1|x) and −1 otherwise, where ρ(·|x) denotes the
conditional distribution of ρ for x ∈ X . It turns out that for
many convex loss functions φ : R→ R+, a Bayes rule can be
expressed as fc = sgn(fφρ ) with fφρ being a minimizer of the
generalization error

Eφ(f) =

∫
Z

φ(yf(x))dρ
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over the set of measurable functions f : X → R. So learning
a Bayes rule is reduced to approximating fφρ from hypothesis
spaces. A special property of the classification problem is
that a Bayes rule fc taking binary values in {1,−1} is often
discontinuous, and fφρ may also be discontinuous such as
fφρ = fc for the hinge loss φ(v) = (1−v)+ := max{1−v, 0}.
This motivates us to study approximation and learning in Lp
spaces with 1 ≤ p ≤ ∞ of functions fφρ in Sobolev spaces
W r
p with small regularity index r > 0.
We study binary classification algorithms with hypothesis

spaces generated by deep convolutional neural networks
(CNNs), which is a special kind of deep neural networks pro-
duced by convolutions. Classification with CNNs has achieved
remarkable successes in many practical applications [32], [19],
[10]. Theoretical verifications, however, still lack much. In
[37], the uniform approximation by CNNs of functions with
Hölder regularity index r > d

2 + 2 on domains in Rd was
considered by the last author. In [13], we analyzed the uniform
approximation of nonsmooth functions with small Hölder
regularity index r > 0 on the unit sphere X = Sd−1 of Rd
which is the input space throughout this paper. See compar-
isons in Table I. Spherical data arise naturally in many fields
such as cosmic microwave background analysis [12], global
ionospheric prediction to geomagnetic storms [20], climate
change modelling, environmental governance, meteorology,
remote sensing and other spherical signals. In this paper, we
carry out not only analysis for the Lp approximation by deep
CNNs with p <∞ but also improve our previous results in the
case of uniform approximation with p =∞. This is achieved
by our novel idea of using methods from spherical analysis
and approximation theory. Our quantitative estimates for the
Lp approximation lead to generalization bounds for the excess
misclassification error.

The convolution of a sequence w on Z supported in
{0, · · · , S} for some filter length S ∈ N with another se-
quence supported in {1, · · · , D}, regarded as a vector v =
(v1, . . . , vD), is defined as a sequence w ∗ v given by

(w ∗ v)i =
∑
k∈Z

wi−kvk =

D∑
k=1

wi−kvk, i ∈ Z,

which is supported in {1, · · · , D + S}. For an input x =
(x1, x2, . . . , xd) ∈ Rd, a deep CNN with J hidden layers
of neurons {h(j) : Rd → Rdj} and widths {dj := d+ js} is
defined in [37], [39] by h(0)(x) = x and iteratively

h(j)(x) = σ
(
T (j) h(j−1)(x)− b(j)

)
, j = 1, . . . , J, (1)

where T (j) := Tw
(j)

is a Toeplitz type convolutional matrix
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given with a filter sequence w = w(j) and D = dj−1, D+S =
dj by

Tw =



w0 0 0 0 · · · · · · 0
w1 w0 0 0 · · · · · · 0
...

. . . . . . . . . . . . . . .
...

wS wS−1 · · · w0 0 · · · 0
0 wS · · · w1 w0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 wS · · · w1 w0

0 · · · 0 0 wS · · · w1

...
. . . . . . . . . . . . . . .

...
0 0 0 0 · · · 0 wS



(2)

with dimension R(D+S)×D. Throughout the paper we take the
rectified linear unit (ReLU) activation function

σ(u) = max{u, 0}, u ∈ R.

After the last CNN layer, we apply a downsampling
operator Dd introduced in [38] for v = (vi)

D
i=1 ∈ RD defined

by Dd(v) = (vid)
bD/dc
i=1 , where buc denotes the integer part of

u > 0. Then we add two fully connected layers h(J+1), h(J+2)

with widths D1,D2 > 0, respectively, connection matrices
F (J+1), F (J+2) and bias vectors b(J+1), b(J+2), to be deter-
mined. Precisely,

h(J+1)(x) = σ
(
F (J+1)Dd

(
h(J)(x)

)
− b(J+1)

)
(3)

and

h(J+2)(x) = σ
(
F (J+2)h(J+1)(x)− b(J+2)

)
. (4)

Such a network with many convolutional layers followed by
downsampling operations and very few fully connected layers
is quite common in practical applications [19], [14]. An output
function of our network takes the form c(J+2) ·h(J+2)(x)−A :
X → R with a coefficient vector c(J+2) ∈ RD2 and a bias
A ∈ R.

II. MAIN RESULTS

In this paper we conduct generalization analysis of deep C-
NNs used for binary classification with data on spheres. When
the hinge loss is used, the target function fφρ = fc is a binary
function which is not suitable for uniform approximation.

A. Approximation by deep CNNs in Lp spaces

Our first main result is the following estimate for the
approximation ability of our CNN network with respect to
the p-norm ‖ · ‖p in the Lp space to approximate functions
from the Sobolev space W r

p (Sd−1) with 1 ≤ p ≤ ∞, r > 0,
to be defined in Section III.

Theorem 1: Let d ≥ 3, 2 ≤ S ≤ d, r > 0 and 1 ≤ p ≤ ∞.
Then there exists a constant ĉd ≥ d depending only on d
such that for any J ≥ ĉd

S−1 and f ∈ W r
p (Sd−1), a deep

neural network consisting of J layers of CNNs and two fully
connected layers of widths D1 = (2N+3)b(d+JS)/dc,D2 =

b(d + JS)/dc respectively and N =

⌈(
(S−1)J
ĉd

) d+3+r
2(d−1)

⌉

produces an output function c(J+2) · h(J+2)(x)−A : X → R
with c(J+2) ∈ RD2 and A ∈ R satisfying∥∥∥f − c(J+2) · h(J+2)(x) +A

∥∥∥
p
≤ C‖f‖W r

p (Sd−1)J
− r
d−1 ,

(5)
where C is a constant depending only on d, r, S and p. The
total number of free parameters N in the network can be
bounded as

N ≤ (3S + 5)Jmax{1, d+3+r
2(d−1)} + 5.

The proof of Theorem 1 will be given in Section III. More
details on the explicit structure of our neural network can be
found in Appendix A.

The approximation order in Theorem 1 might be improved
when features of the approximated functions other than the
regularity are used. Such features may be found for functions
on spheres due to the spherical properties. For example, a
special class of functions on spheres consists of spherical
polynomials to be defined later. We observe that for these
functions, better approximation can be achieved.

Corollary 1: Let d ≥ 3, 2 ≤ S ≤ d, r > 0, 1 ≤ p ≤ ∞
and n,N ∈ N. Then there exists a constant ĉd ≥ d depending
only on d such that for any spherical polynomial f of degree
n, l ∈ N and J ≥ ĉdn

d−1

S−1 , a deep neural network consisting
of J layers of CNNs and two fully connected layers of widths
D1 = (2N+3)b(d+JS)/dc,D2 = b(d+JS)/dc respectively
produces an output function c(J+2) ·h(J+2)−A with c(J+2) ∈
RD2 and A ∈ R satisfying∥∥∥f − c(J+2) · h(J+2) +A

∥∥∥
p
≤ Cnd+3‖f‖pN−2, (6)

where C is a constant depending only on d, r, S and p, and

N ≤ J(3S + 2) +m+ 2N + 4

is the total number of free parameters in the network.

B. Generalization error bounds for classification
Once we understand the approximation ability of the deep

network, we can carry out generalization analysis of empir-
ical risk minimization (ERM) algorithms implemented over
hypothesis spaces induced by the network. Here we restrict
the parameters to have a uniform bound R > 0 and take the
hypothesis space of functions on Sd−1 induced by our network
stated in Theorem 1 as

HJ,D1,D2,S,R =

{
c(J+2) · h(J+2)(x)−A : c(J+2) ∈ RD2 ,

A ∈ R, ‖w(j)‖∞, ‖b(j)‖∞, ‖F (J+1)‖∞, ‖F (J+2)‖∞,

‖c(J+2)‖∞ ≤ R
}
.

(7)

The classification algorithm we study produces a classifier
sgn(f̂z) as the sign of f̂z, a minimizer over the hypothesis
space H = HJ,D1,D2,S,R of the empirical error Ez(f) asso-
ciated with a convex loss function φ and a random sample
z := {(xi, yi)}Mi=1 drawn according to ρ

f̂z := arg min
f∈H
Ez(f) = arg min

f∈H

{
1

M

M∑
i=1

φ(yif(xi))

}
. (8)
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Our target is to estimate the excess misclassification error

R(sgn(f̂z))−R(fc). (9)

Its convergence rates depend on the convexity of the loss φ
and noise level of the underlying distribution ρ, which can be
measured simultaneously by the variancing power [33] of the
pair (φ, ρ) defined as the maximum τ ∈ [0, 1] such that for
some C1 > 0,

E
{(
φ(yf(x))− φ

(
yfφρ (x)

))2} ≤ C1

(
E(f)− E

(
fφρ
))τ

(10)
holds for any measurable function f : X → R. A generaliza-
tion error bound with a general loss function φ will be given in
Theorem 5 of Section IV. As an illustration, we state learning
rates for the p-norm loss φ(v) = (1 − v)p+ with p > 1 and
the hinge loss with p = 1. This is our second main result,
to be proved in Section IV, with learning rates of the CNN
classification algorithm given in terms of the approximation
error

D(H) = inf
f∈H

{
E(f)− E(fφρ )

}
.

Theorem 2: Let d ≥ 3, 2 ≤ S ≤ d, r > 0, 1 ≤ p <∞ and
φ(v) = (1 − v)p+. If the pair (φ, ρ) has a variancing power
τ ∈ [0, 1] with (10) valid and the approximation error of the
CNN hypothesis space HJ,D1,D2,S,R satisfies

D(H) = inf
f∈H

{
E(f)− E(fφρ )

}
≤ C0J

− rp
d−1 (11)

with a constant C0 independent of the depth J , then by
choosing

J =


⌈
(M/ logM)

d−1
(β+1)(d−1)+pr(2−τ)

⌉
, if p > 1,⌈

(M/ logM)
d−1

2β(d−1)+r(2−τ)

⌉
, if p = 1,

(12)

for any δ > 0, with confidence 1 − δ, the excess misclassi-
fication error R(sgn(f̂z)) − R(fc) of the induced classifier
sgn(f̂z) can be bounded as C̃

(
logM
M

) pr
2(β+1)(d−1)+2pr(2−τ)

log 2
δ , if p > 1,

C̃
(

logM
M

) r
2β(d−1)+r(2−τ)

log 2
δ , if p = 1,

(13)

where β = max
{

1, d+3+r
2(d−1)

}
and C̃ is a constant independent

of M or δ.
Based on Theorem 1 and bounds in [7] for E(f)−E(fφρ ) in

terms of ‖f−fφρ ‖
p
LpρX

with respect to the marginal distribution
ρX on X , we know that the decay (11) of the approximation
error is a reasonable assumption.

The power indices in (13) and the learning rates can be
better demonstrated when r is large enough. In this case, the
learning rates can be of order O

(
(logM/M)

1
2−τ−ε

)
for p =

1, where ε > 0 can be arbitrarily small.

C. Improved learning rates under noise conditions

The variancing power τ and hence learning rates can be
explicitly found when some noise conditions are imposed.
Here we consider the Tsybakov noise condition [31] with

an exponent θ > 0 which is defined for a Borel probability
measure ρ to satisfy

ρX ({x ∈ X : 0 < |fρ(x)| ≤ cθt}) ≤ tθ, ∀t > 0 (14)

with a positive constant cθ where fρ : X → R is the regression
function given by fρ(x) =

∫
Y
ydρ(y|x) = ρ(y = 1|x) −

ρ(y = −1|x) for x ∈ X or equivalently fρ(x) := η(x) −
(1 − η(x)) = 2η(x) − 1 with η(x) := ρ(y = 1|x) called
the conditional class probability. Our last main result, to be
proved in Section V, present improved learning rates when
such a noise condition is imposed and the 2-norm loss is used
for classification.

Theorem 3: Let d ≥ 3, 2 ≤ S ≤ d, and φ(v) = (1 − v)2+.
If condition (11) for the decay of the approximation error is
valid with p = 2 and some r > 0, and the Tsybakov noise
condition (14) is satisfied for some θ > 0, then by taking

J =
⌈
(M/ logM)

d−1
(β+1)(d−1)+2r

⌉
,

for any δ > 0, with confidence 1− δ, there holds

R(sgn(f̂z))−R(fc) ≤ C̃
(

logM
M

) 2rθ
(2+θ)((β+1)(d−1)+2r)

log
2

δ
,

where C̃ is a constant independent of M or δ.
When the indices r for the approximation error and θ for

the noise are large enough, the above learning rate can be of
order O

(
(logM/M)

4/5−ε
)

, where ε > 0 can be arbitrarily
small. This rate verifies the efficiency of CNN algorithms in
solving classification tasks. In the special case when the target
function is a spherical polynomial, the learning rate can be
further improved.

Theorem 4: Let d ≥ 3, 2 ≤ S ≤ d, and φ(v) = (1 − v)2+.
Let fρ be a spherical polynomial. Under the Tsybakov noise
condition (14) for some θ > 0, we have with confidence 1−δ,

R(sgn(f̂z))−R(fc) ≤ C
(

logM
M

)4θ/5(2+θ)

log
2

δ
.

D. Discussion

The classical topic of approximating functions by shallow or
multi-layer neural networks was well developed 30 years ago
when the networks are fully connected meaning that the con-
nections in (1) are full matrices instead of sparse convolutional
ones expressed by (2) in this paper. The fully connectedness
yields nice approximation rates [2], [25] when the activation
function is a C∞ sigmoid type function. For example, with
a localized Taylor expansion approach, for approximating
f ∈ W r

∞([−1, 1]d), convergence rates of order O(N−r/d)
with a shallow network of N hidden neurons were obtained in
[25] if for some b ∈ R and some integer ` ∈ N \ {1}, the C∞

activation function σ satisfies σ(k)(b) 6= 0 for all k ∈ Z+

and limu→−∞ σ(u)/|u|` = 0 and limu→∞ σ(u)/u` = 1.
The problem for ReLU which does not satisfy these extra
conditions was solved recently in [18], [34], [4], [27], [28],
[30] for fully connected networks.

Deep CNNs have different structures induced by convo-
lutions. Their approximation theory was recently developed
in [37] for universality, in [38] for comparisons with fully
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connected networks, in [13] for analysis with spherical data,
in [24] for demonstrating superiority in approximating radial
functions, and in [40] for CNNs induced by 2-D convolutions.
ResNet-type CNNs were studied in [26].

TABLE I
APPROXIMATION ERROR USING DEEP CNNS

Regularity Range Error rate

f ∈W r
2 (Rd) r > 2 + d

2
O(J−( 1

2
+ 1
d
)),

[37, Theorem 2]

f ∈W r
∞(Sd−1) r > 0 O(J

−min{ r
2(d−1+τ)

, 1
2
}
),

[13, Theorem 1]

f ∈W r
p (Sd−1)

r > 0,
1 ≤ p ≤ ∞

O(J
− r
d−1 ),

[Theorem 1 here]

The problem of Lp approximation with p <∞ appears nat-
urally in the setting of binary classification. The approximated
function here is often discontinuous and may be assumed to be
in a Sobolev space W r

p (X) with small r > 0, which involves
the topic of approximating non-smooth functions studied in
[16].

Convergence rates of the excess misclassification error
with the 0 − 1 loss were well studied two decades ago.
Convergence rates of order O(M−1/2) can be attained using
oracle inequalities [23], [35]. It was shown in [31] that the
minimax lower bound is O(M−α(θ+1)/{α(θ+2)+(d−1)θ}) when
the empirical risk minimizer is taken over all measurable
classifiers and the decision boundaries are generated by α-
Hölder smooth functions with Tsybakov noise condition of
exponent θ. Furthermore, fast rates of order O(Mε−1) with an
arbitrarily small ε > 0 can be attained when α and θ are large
enough. As for using neural networks, minimax optimal rates
O(M−α(θ+1)/{α(θ+2)+(d−1)θ}) and O(Mα(θ+1)/{α(θ+2)+d})
under both Tsybakov noise condition and an additional con-
dition for α-Hölder smooth decision boundary or α-Hölder
smooth conditional class probability η(x) respectively, are
shown in [17] when the empirical risk minimizer f̂z is gener-
ated by deep neural networks (DNN) with specified structures.
To the best of our knowledge, no misclassification error rate
has been established for deep CNN classifiers. The related
results can be seen in Table II.

Choosing the depth J is a crucial topic in deep learning.
While increasing the depth can reduce the approximation error,
it makes the sample error larger. Our choice (12) of the depth
J makes a trade-off between approximation error and sample
error. This phenomenon of balancing the approximation ability
and capacity has been practically observed in a large literature
and theoretically verified for ReLU fully connected networks
in [8], [9], [15].

III. ESTIMATES FOR APPROXIMATION BY DEEP CNNS

In this section, we establish error estimates for the approx-
imation of fφρ ∈W r

p (Sd−1) by our deep CNN network. Such
a result was obtained for the case p = ∞ in our previous
work [13]. Here we not only extend the estimate to the case
1 ≤ p < ∞ but also improve the convergent rates. The
key novelty of our significantly improved analysis is to apply
an efficient cubature formula on spheres and a tighter spline

TABLE II
EXCESS MISCLASSIFICATION ERROR

Hypothesis
space Loss Condition Rate

Measurable
functions

0− 1
loss

θ-noise
condition;
α-Hölder
decision
boundary

O(M−
α(θ+1)

α(θ+2)+(d−1)θ )
[31, Theorem 1]

DNN hinge O(M−
α(θ+1)

α(θ+2)+(d−1)(θ+1) )
[17, Theorem 1]

Deep
CNNs

1−norm
fφρ ∈

W r
p (Sd−1)

O(M−
r

2β(d−1)+r(2−τ) )
[Theorem 2 here]

p−norm O(M−
pr

2(β+1)(d−1)+2pr(2−τ) )
[Theorem 2 here]

2−norm

fφρ ∈
W r
p (Sd−1);
θ-noise

condition

O(M−
2rθ

(2+θ)((β+1)(d−1)+2r) )
[Theorem 3 here]

interpolation. So ideas and methods from spherical analysis
and approximation theory play essential roles in our estimates.
In particular, the following preliminaries are needed.

A. Spherical harmonics and cubature formulae

A spherical harmonic of degree n on the sphere Sd−1 is
a homogeneous polynomial P dn of degree n defined on Rd
satisfying ∆P dn = 0, where ∆ is the Laplace operator on Rd.
Denote Hdn as the set of all spherical harmonics of degree n
on Sd−1. Its dimension is

N(n, d) =

(
n+ d− 1

n

)
−
(
n+ d− 3

n− 2

)
≤ Cd nd−2, (15)

where Cd > 0 is a constant depending only on d.
The spacesHdn of spherical harmonics can also be character-

ized as eigenfunction spaces of the Laplace-Beltrami operator
∆0 on Sd−1, that is,

Hdn = {f ∈ C2(Sd−1) : ∆0f = −λnf},

where λn = n(n+d−2) and C2(Sd−1) denotes the space of all
twice continuously differentiable functions on Sd−1. We define
the Sobolev space W r

p (Sd−1) to be a subspace of Lp(Sd−1),
1 ≤ p ≤ ∞, r > 0, with the finite norm

‖f‖W r
p (Sd−1) :=

∥∥∥(−∆0 + I)r/2f
∥∥∥
Lp(Sd−1)

, (16)

where ‖g‖Lp(Sd−1) =
(∫

Sd−1 |g(x)|pdµ
)1/p

denotes the Lp
norm with respect to the normalized spherical measure µ on
Sd−1. For d ≥ 3, let Cλn(t) be the Gegenbauer polynomial
of degree n with parameter λ := d−2

2 . It is well known that
L2(Sd−1) can be orthogonally decomposed as

L2(Sd−1) =

∞⊕
n=0

Hdn

and for any x, y ∈ Sd−1, n+λ
λ Cλn (〈x, y〉) is a reproducing

kernel of Hdn in the sense that∫
Sd−1

p(y)
n+ λ

λ
Cλn(〈x, y〉)dµ(y) = p(x), ∀p ∈ Hdn, (17)
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where 〈x, y〉 is the inner product on Rd.
Given a smooth function η ∈ C∞ ([0,∞)) with η(t) = 1

for t ∈ [0, 1], 0 ≤ η(t) ≤ 1 for t ∈ [1, 2] and η(t) = 0 for
t ≥ 2, we set

Kn(t) =

2n∑
`=0

[
η(
`

n
)

]2
λ+ `

λ
Cλ` (t)

and define a linear operator Ln : Lp(Sd−1) → Lp(Sd−1) for
f ∈ Lp(Sd−1) by

Ln(f)(x) =

∫
Sd−1

f(y)Kn(〈x, y〉)dµ(y), x ∈ Sd−1.

This integral linear operator is bounded and provides good
approximations of Sobolev functions.

Lemma 1: For n ∈ N, r > 0, 1 ≤ p ≤ ∞ and
f ∈W r

p

(
Sd−1

)
, there holds

‖f − Ln(f)‖Lp(Sd−1) ≤ c12d−1n−r ‖f‖W r
p (Sd−1) , (18)

where c1 is a constant depending only on the function η.
Furthermore, with a constant C2 > 0 depending on d and
η,

‖Ln(f)‖Lp(Sd−1) ≤ C2‖f‖Lp(Sd−1). (19)

To get a discrete representation of Ln(f), we shall use a
cubature formula for integration of polynomials of degree 4n
on Sd−1, d ≥ 3, see [6, Theorem 3.1].

Lemma 2: There exists a constant c2 > 0 depending only
on d such that for any m ≥ c2n

d−1, there exist positive
numbers λj and points zj ∈ Sd−1, j = 1, . . . ,m, satisfying∫

Sd−1

f(x)dµ(x) =

m∑
j=1

λjf(zj), ∀f ∈ Π4n

(
Sd−1

)
,

where Π4n

(
Sd−1

)
denotes the space of polynomials of degree

up to 4n on Sd−1. Furthermore, for f ∈ Π4n(Sd−1),

‖f‖p �


(∑m

j=1 λj |f(zj)|p
) 1
p

, if 1 ≤ p <∞,

maxj=1,...,m n
d−1λj |f(zj)|, if p =∞,

(20)
where A � B means there are c3, c4 > 0 independent of n
or m such that c3A ≤ B ≤ c4A. Particularly, we say such a
family {(λj , zj)}mj=1 follows a cubature rule of degree 4n.

B. Proof of Theorem 1
Now we are in a position to prove Theorem 1 based on the

following lemmas. Define

K̃n(t) =

2n∑
`=0

η(
`

n
)
λ+ `

λ
Cλ` (t),

which is a polynomial of degree 2n.
Lemma 3: Let d ≥ 3, r > 0, 1 ≤ p ≤ ∞. There exist λj ∈

R and zj ∈ Sd−1, j = 1, 2, . . . ,m, with m = bc2 + 1cnd−1,
such that for any f ∈W r

p (Sd−1),∥∥∥∥∥∥f −
m∑
j=1

λjαn(f)(zj)K̃n(〈zj , ·〉)

∥∥∥∥∥∥
p

(21)

≤ c12d−1n−r ‖f‖W r
p (Sd−1) ,

where

αn(f)(zj) =

∫
Sd−1

f(y)K̃n(〈zj , y〉)dµ(y)

and {(λj , zj)}mj=1 follows a cubature rule of degree 4n.
Proof: By the reproducing property (17) and orthogonal

property of Hdn, we have that for any x, y ∈ Sd−1,

Kn(〈x, y〉) =

2n∑
`=0

η(
`

n
)
λ+ `

λ

∫
Sd−1

Cλ` (〈x, z〉) (22)

·
2n∑
k=0

η(
k

n
)
λ+ k

λ
Cλk (〈z, y〉)dµ(z)

=

∫
Sd−1

K̃n(〈x, z〉)K̃n(〈z, y〉)dµ(z).

According to Lemma 2, for c2nd−1 < m = bc2 + 1cnd−1 ≤
(c2 + 1)nd−1 there exists a cubature rule {(λj , zj)}mj=1 of
degree 4n satisfying∫

Sd−1

K̃n(〈x, z〉)K̃n(〈z, y〉)dµ(z)

=

m∑
j=1

λjK̃n(〈x, zj〉)K̃n(〈zj , y〉),

which, combining (22), yields that

Ln(f)(x) =

∫
Sd−1

f(y)

m∑
j=1

λjK̃n(〈x, zj〉)K̃n(〈zj , y〉)dµ(y)

=

m∑
j=1

λj

∫
Sd−1

f(y)K̃n(〈zj , y〉)dµ(y)K̃n(〈x, zj〉).

This completes the proof by using (18).
Proof of Theorem 1: Note that K̃n is a polynomial of

degree at most 2n on [−1, 1], by Markov’s inequality,

‖K̃ ′′n‖∞ ≤ (2n)2‖K̃ ′n‖∞ ≤ (2n)4‖K̃n‖∞ ≤ 3d+2nd+3.

Here we have used the fact that for λ = d−2
2 > 0,

‖Cλ` ‖∞ = Cλ` (1) =

(
`+ d− 3

`

)
≤ (`+ 1)d−3

holds for all ` ∈ N, which implies that ‖K̃n‖∞ ≤ 5·3d−2nd−1.
By [5, Theorem 2.1], for N ∈ N, the quasi-interpolant QN

induced by the hat function ψ(t) = N(σ(t − 1
N ) − 2σ(t) +

σ(t+ 1
N )) defined for continuous functions g ∈ C[−1, 1] by

QN (g)(t) =

N∑
`=−N

g(
`

N
)ψ(t− `

N
), t ∈ [−1, 1]

satisfies

‖g −QN (g)‖∞ ≤ c5
1

N
ω (g′, 1/N) , g ∈ C1[−1, 1],

where c5 is an absolute constant and ω (g′, 1/N) is the
modulus of continuity of g′ given by

ω(g′, 1/N) = sup
u∈[−1,1−t],
t∈[0,1/N ]

{
|g′(u)− g′(u+ t)|

}
.
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In particular, for the function K̃n ∈ C2[−1, 1], we have∥∥∥K̃n −QN (K̃n)
∥∥∥
∞
≤ c5‖K̃ ′′n‖∞

N2
.

Set

A`(K̃n) = N
(
K̃n(

`− 1

N
)− 2K̃n(

`

N
) + K̃n(

`+ 1

N
)
)

for ` = −N − 1, . . . , N + 1, where we denote K̃n( jN ) = 0
for j 6∈ [−N, . . . , N ]. If we denote

B(t) := K̃n(t)−
N+1∑

`=−N−1

A`(K̃n)σ(t− `

N
), t ∈ [−1, 1],

then the above analysis yields

‖B‖∞ ≤
c53d+2nd+3

N2
. (23)

As shown in the appendix, we can construct our CNN
network with parameters given explicitly and the final output
given by (45) as

c(J+2) · h(J+2)(x)−A

=

m∑
j=1

λjαn(f)(zj)

[
N+1∑

`=−N−1

A`(K̃n)σ

(
〈zj , x〉 −

`

N

)]
.

Then from the definition of the function B and its bound
(23), we see by Hölder’s inequality that for 1 ≤ p <∞ with
p′ = p

p−1 ,∥∥∥∥∥∥
m∑
j=1

λjαn(f)(zj)K̃n(〈zj , ·〉)− c(J+2) · h(J+2)(x) +A

∥∥∥∥∥∥
p

p

=

∫
Sd−1

∣∣∣∣∣∣
m∑
j=1

λjαn(f)(zj)B(〈zj , x〉)

∣∣∣∣∣∣
p

dµ(x)

≤
m∑
j=1

λj |αn(f)(zj)|p
∫
Sd−1

 N∑
j=1

λj |B(〈zj , x〉)|p
′


p
p′

dµ(x)

≤
m∑
j=1

λj |αn(f)(zj)|p
( m∑
j=1

λj

) p
p′ ‖B‖p∞ .

Note that the reproducing kernel k+λ
λ Cλk (〈x, y〉) of Hdk can

be expressed in terms of an orthonormal basis {Y`,k}N(k,d)
`=1 of

Hdk as
∑N(k,d)
`=1 Y`,k(x)Y`,k(y). So for z ∈ Sd−1,∫

Sd−1

f(y)K̃n(〈y, z〉)dµ(y)

=

2n∑
k=0

η(
k

n
)

N(k,d)∑
`=1

Y`,k(z)

∫
Sd−1

f(y)Y`,k(y)dµ(y),

which is a polynomial of degree 2n in z. By (20) in Lemma 2
and a similar bound as (19) in Lemma 1,

m∑
j=1

λj |αn(f)(zj)|p

≤ cp3
∫
Sd−1

∣∣∣∣∫
Sd−1

f(y)K̃n(〈y, z〉)dµ(y)

∣∣∣∣p dµ(z)

≤ cp3C
p
2‖f‖pp ≤ c

p
3C

p
2‖f‖

p
W r
p
.

On the other hand,
∑m
j=1 λj =

∫
Sd−1 dµ(x) = 1 by taking

f = 1 in Lemma 2. Then combining the above analysis with
(23), we have∥∥∥∥∥∥

m∑
j=1

λjαn(f)(zj) K̃n(〈zj , ·〉)− c(J+2) · h(J+2)(x) +A
∥∥∥
p

≤
c53d+2cp3C

p
2n

d+3‖f‖W r
p (Sd−1)

N2
.

This together with (21) implies∥∥∥f − (c(J+2) · h(J+2)(x)−A
)∥∥∥

Lp(Sd−1)

≤ c6‖f‖W r
p (Sd−1) max

{
n−r,

nd+3

N2

}
,

(24)

where c6 is a constant depending on d and p given by c12d−1+
c53d+2cp3C

p
2 .

The proof for p =∞ is similar:∥∥∥∥∥∥
m∑
j=1

λjαn(f)(zj)K̃n(〈zj , ·〉)− c(J+2) · h(J+2)(x) +A

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
m∑
j=1

λjαn(f)(zj)B(〈zj , x〉)

∥∥∥∥∥∥
∞

≤

∣∣∣∣∣∣
m∑
j=1

λjαn(f)(zj)

∣∣∣∣∣∣ ‖B(〈zj , x〉‖∞ .

Using (20) in Lemma 2 when p =∞ and a similar bound as
(19) in Lemma 1, we have∣∣∣∣∣∣

m∑
j=1

λjαn(f)(zj)

∣∣∣∣∣∣ ≤ c3C2‖f‖W r
∞
.

Then combining (23) with (21), we get the same bound as
(24).

Take ĉd = bc2 + 1cd to be a constant depending only on

d. When J ≥ ĉd
S−1 , we take n =

⌊(
(S−1)J
bc2+1cd

) 1
d−1

⌋
and know

that n ∈ N. Take m = bc2 + 1cnd−1, then

md

S − 1
=
bc2 + 1cnd−1d

S − 1
=

ĉd
S − 1

nd−1

≤ ĉd
S − 1

(S − 1)J

ĉd
≤ J,

so the restriction J ≥ d mdS−1e for our construction of CNNs is

satisfied. Since N =

⌈(
(S−1)J
ĉd

) d+3+r
2(d−1)

⌉
, we know that N2 ≥

nd+3+r. Hence∥∥∥f − (c(J+2) · h(J+2)(x)−A
)∥∥∥

Lp(Sd−1)

≤ c6‖f‖W r
p (Sd−1)n

−r

≤ c6‖f‖W r
p (Sd−1)2

r

(
ĉd

S − 1

) r
d−1

J−
r
d−1 .

This verifies the desired error estimate (6) with C =

c62r
(

ĉd
S−1

) r
d−1

.
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The total number of free parameters in our network can be
bounded as

N ≤ J(3S + 2) +m+ 2N + 4

≤ (3S + 2)J + bc2 + 1c (S − 1)

ĉd
J

+ 2

(
(S − 1)

ĉd

) d+3+r
2(d−1)

J
d+3+r
2(d−1) + 5

≤ (3S + 5)Jmax{1, d+3+r
2(d−1)} + 5.

The proof of the theorem is complete.

C. Proof of Corollary 1

Proof of Corollary 1: Let f be a spherical polynomial of
degree n. By (17), f(x) =

∫
Sd−1 f(y)Kn(〈x, y〉)dσ(y). Since

f(y) ·Kn(〈x, y〉) is a spherical polynomial in y of degree at
most 3n, by Lemma 2 with m = bc2 + 1cnd−1, there exist
z1, . . . , zm ∈ Sd−1 and λ1, . . . , λm > 0 such that

f(x) =

m∑
j=1

λjf(zj)Kn(〈x, zj〉), ∀ x ∈ Sd−1.

Using the same procedure as in the proof of Theorem 1
with αn(f)(zj) simplified by f(zj), we can construct a CNN
network with parameters given explicitly and the final output
given as

c(J+2) · h(J+2)(x)−A

=

m∑
j=1

λjf(zj)

[
N+1∑

`=−N−1

A`(Kn)σ

(
〈zj , x〉 −

`

N

)]
.

We have∥∥∥f − c(J+2) · h(J+2) +A
∥∥∥
p

≤

∥∥∥∥∥∥
m∑
j=1

λjf(zj)Kn(〈zj , ·〉)− c(J+2) · h(J+2) +A

∥∥∥∥∥∥
p

≤Cnd+3‖f‖p/N2.

The total number of free parameters in the network can be
bounded as N ≤ J(3S + 2) + nd−1 + 2N + 4.

IV. GENERALIZATION ERROR BOUNDS

In this section, we derive learning rates stated in Theorem 2
for the excess misclassification error R(sgn(f̂z)) − R(fc)
of the classifier sgn(f̂z) induced by the CNN network (8).
This is achieved by bounds for the excess generalization error
E(π(f̂z))−E(fφρ ) together with a comparison theorem below.
Here, due to the binary classification nature with the output
space Y = {−1, 1}, we can project a real-valued function
f : X → R onto the interval [−1, 1] without changing the
sign sgn(f) = sgn(π(f)) by applying the projection operator
π defined in [7] as

π(f)(x) :=

 1, if f(x) > 1,
−1, if f(x) < −1,
f(x), if − 1 ≤ f(x) ≤ 1.

(25)

Our generalization error bounds are stated as follows with
N (H, η) being the covering numbers of a compact subset
H of C(X) and η > 0 defined as the minimal l ∈ N such
that there exist f1, . . . , f` ∈ H satisfying H =

⋃`
i=1{g ∈ H :

‖fi − g‖∞ ≤ η}.
Theorem 5: Let H be a compact subset of C(X) with B =

supf∈H ‖f‖∞. Define f̂z by (8) with a convex loss function
φ : R → R+ and a random sample z. If φ(1) = 0 and the
pair (φ, ρ) has a variancing power τ ∈ [0, 1] defined by (10),
then for any 0 < δ < 1, with the probability at least 1− δ, the
excess generalization error E(π(f̂z))−E(fφρ ) can be bounded
by

4D(H) +
8C ′0 log 2

δ

3M
+ 2

(
8C1 log 2

δ

M

)1/(2−τ)

+ 24ε∗, (26)

where C ′0 := ‖φ‖L∞[−max{B,1},max{B,1}] and ε∗ is the
smallest positive number ε satisfying

N

(
H, ε

|φ′+(−1)|

)
exp

{
− Mε2−τ

2C1 + 4
3φ(−1)ε1−τ

}
≤ δ

2
.

(27)
A proof of Theorem 5 can be found in Appendix C.
To apply Theorem 5 to proving Theorem 2, we need bounds

for the covering numbers N (H, η), which are given in the
following lemma to be proved in Appendix B.

Lemma 4: For integers S,R,D1,D2 ≥ 1 and J,N ≥ 2, let
H := HJ,D1,D2,S,R as defined in (7) with D1 = (2N + 3)D2.
For any η > 0, the covering numbers N (H, η) satisfy that

N (H, η) ≤
(

40D1JR
J+3SJ

η

)J(3S+2)+D2+2N+4

.

The following comparison theorem established in [7], [36],
[3] allows us to estimate the excess misclassification error (9)
by the excess generalization error E(π(f̂z))−E(fφρ ) by taking
f = π(f̂z).

Lemma 5: Let f : X → R be a measurable function. For
the p-norm loss φ(v) = (1− v)p+ with p > 1, there holds

R(sgn(f))−R (fc) ≤
√

2
(
E(f)− E(fφρ )

)
. (28)

For the hinge loss φ(v) = (1− v)+, we have fφρ = fc and

R(sgn(f))−R (fc) ≤ E(f)− E(fc). (29)

Now we are in a position to prove Theorem 2.
Proof of Theorem 2: Denote

P := J(3S + 2) +D2 + 2N + 4.

By Lemma 4 and the value |φ′+(−1)| = p2p−1 for the p-norm
loss, we know

log N (H, ε

|φ′+(−1)|
)

≤ P
(
J log(RS) + 3 logP + log

(
40p2p−1R3/ε

))
.

Hence for 0 < δ < 1, the quantity ε∗ defined by (27) can be
bounded by any positive solution ε̃ of the following inequality

h(ε) ≤ log
δ

2
.
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where h : R+ → R is a decreasing function defined by

h(ε) = P (J log(RS) + 3 logP) + P log
(
40p2p−1R3/ε

)
− Mε2−τ

2C1 + 2p+2

3 ε1−τ
.

Denote A := P (J log(RS) + 3 logP). Take

ε̃ = a

(
A log

2M
δ
/M

)1/(2−τ)

(30)

with a := max
{

40p2p−1R3, C1

}
. Under the restriction

A log
2M
δ
/M≤ 1, (31)

we know from the bound a = max
{

40p2p−1R3, C1

}
≥ 40

that
2C1 +

2p+2

3
ε̃1−τ ≤ 2C1 +

2p+2

3
a ≤ 2p+1a.

It follows that

h(ε̃) ≤ A+
P

2− τ
logM−

a2−τA log 2M
δ

2p+1a

≤ A+
P

2− τ
logM−

A log 2M
δ

2p+1
.

If we restrict M and J further as

M≥ exp{2p+3}, J ≥ 2p+3, (32)

we see that

h(ε̃) ≤ 1

4

A log 2M
δ

2p+1
+

1

4

A log 2M
δ

2p+1
−
A log 2M

δ

2p+1

= −
A log 2M

δ

2p+2
≤ − log

2M
δ
≤ log

δ

2
,

which implies

ε∗ ≤ ε̃ = a

(
A log

2M
δ
/M

)1/(2−τ)

.

Furthermore, since ĉd ≥ d and N =

⌈(
(S−1)J
ĉd

) d+3+r
2(d−1)

⌉
,

we have

P = J(3S + 2) +D2 + 2N + 4 ≤ (3S + 8)Jβ

and
A ≤ C̃4J

β+1, (33)

where β = max
{

1, d+3+r
2(d−1)

}
and

C̃4 := (3S + 8) (log(RS) + 3 log(3S + 8) + 3β) .

It follows that

ε∗ ≤ aC̃1/(2−τ)
4

(
Jβ+1 logM
M

) 1
2−τ

(
log

2

δ

) 1
2−τ

.

Putting this bound and condition (11) into Theorem 5, we
know that with confidence at least 1− δ,

E(π(f̂z))− E(fφρ )

≤ C̃5

(
J−

pr
d−1 +

(
Jβ+1 logM
M

) 1
2−τ
)

log
2

δ
,

where

C̃5 := 4C0 + 3C ′0 + 2 (8C1)
1/(2−τ)

+ 24aC̃
1/(2−τ)
4 .

Thus, we choose

J =
⌈
(M/ logM)

d−1
(β+1)(d−1)+pr(2−τ)

⌉
and know that with confidence at least 1− δ,

E(π(f̂z))− E(fφρ )

≤ (1 + 2β+1)C̃5

(
logM
M

) pr
(β+1)(d−1)+pr(2−τ)

log
2

δ
,

(34)

which together with (28) implies

R(sgn(f̂z))−R(fc)

≤
√

2(1 + 2β+1)C̃5

(
logM
M

) pr
2(β+1)(d−1)+2pr(2−τ)

log
2

δ
.

(35)

When the restriction (31) is not satisfied, there holds
log 2M

δ ≥ M
A . Then we use the bound (33) and the choice

of J to find

log
2M
δ
≥ M

A
≥ 1

2β+1C̃4

M
pr(2−τ)

(β+1)(d−1)+pr(2−τ) . (36)

Write log 2M
δ = logM + log 2

δ . We can choose a constant
C̃6 > 0 such that

logM≤ 1

2β+2C̃4

M
pr(2−τ)

(β+1)(d−1)+pr(2−τ)

whenever M≥ C̃6. Combining this with (36), we know that
when M≥ C̃6, we have

log
2

δ
≥ 1

2β+2C̃4

M
pr(2−τ)

(β+1)(d−1)+pr(2−τ) ,

which implies(
logM
M

) pr
2(β+1)(d−1)+2pr(2−τ)

log
2

δ
≥ 1

2β+2C̃4

.

But R(sgn(f̂z))−R(fc) ≤ 1, so we also have

R(sgn(f̂z))−R(fc)

≤ 2β+2C̃4

(
logM
M

) pr
2(β+1)(d−1)+2pr(2−τ)

log
2

δ
.

(37)

By the choice of J , we know that there exists an integer
C̃7 ≥ C̃6 such that both restrictions in (32) are satisfied for
M ≥ C̃7. It follows that either (35) with confidence at least
1− δ or (37) is satisfied whenever M≥ C̃7.

When M < C̃7, we notice(
logM
M

) pr
2(β+1)(d−1)+2pr(2−τ)

log
2

δ
≥ C̃

− pr
2(β+1)(d−1)+2pr(2−τ)

7 .

Combining the above analysis, we know that for anyM∈ N,
with confidence at least 1−δ, the desired error bound for Part
(i) of Theorem 2 holds true with the constant

C̃ :=

√
2(1 + 2β+1)C̃5 + 2β+2C̃4 + C̃

pr
2(β+1)(d−1)+2pr(2−τ)
7 .

The bound for the case of the hinge loss with p = 1 can
be verified in the same way by using (29). The proof of the
theorem is complete.
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V. IMPROVED RATES UNDER NOISE CONDITIONS

In this section, we prove Theorem 3 which improves the
learning rate in Theorem 2 under Tsybakov noise conditions
[31]. To this end, we use a Tsybakov function T = Tρ :
[0, 1] → [0, 1] motivated by Tsybakov conditions defined in
[29] for a probability distribution ρ on X × Y as

T (s) = ρX{x ∈ X : 0 < |fρ(x)| ≤ s}.

The following result follows easily from arguments in [29] for
the least squares loss. We give a proof for completeness.

Proposition 1: Let φ be the 2-norm loss function, i.e.
φ(v) = (1 − v)2+ for v ∈ R. Then fφρ = fρ and for any
measurable function f : X → R and 0 < t < 1,

R(sgn(f))−R(fc) ≤ T

(√(
E(π(f))− E(fφρ )

)
/t

)
+ t.

(38)
Proof: For any measurable function g : X → [−1, 1], we

have φ(yg(x)) = (1−yg(x))2 = (y2−yg(x))2 = (y−g(x))2

which equals the least squares loss. Hence fφρ = fρ : X →
[−1, 1].

For a measurable function f : X → R, we denote

Xf := {x ∈ X : sgn(f(x)) 6= sgn(fρ(x)), |fρ(x)| > 0} .

It is well known (see [21] or [29]) that

R(sgn(f))−R(fc) =

∫
Xf

|fρ(x)|dρX .

We can also see from the proof of Proposition 2 in [29] that

ρX(Xf ) ≤ T (‖f − fρ‖∞) ,

and for any t > 0,

ρX(Xf ) ≤ T
(
‖f − fρ‖L2

ρX
/
√
t
)

+ t.

But the projected function π(f) : X → [−1, 1] satisfies
Xπ(f) = Xf and

‖π(f)− fρ‖2L2
ρX

=

∫
Z

(y− π(f)(x))2dρ−
∫
Z

(y− fρ(x))2dρ

which equals E(π(f))− E(fφρ ), so the above estimate yields

ρX(Xf ) ≤ T

(√(
E(π(f))− E(fφρ )

)
/t

)
+ t.

Since |fρ(x)| ≤ 1, our desired bound follows.
Proof of Theorem 3: Tsybakov noise condition (14)

yields T (s) = O(sθ). Taking t = ∆θ/(2+θ) for ∆ > 0 gives

T
(√

∆/t
)

+ t = O
(

∆θ/(2+θ)
)
.

This together with (38) in Proposition 1 applied to f = f̂z
tells us that

R(sgn(f̂z))−R(fc) = O
(
E(π(f̂z))− E(fφρ ))

θ
2+θ

)
. (39)

The 2-norm loss has a variancing power τ = 1. So we combine
(39) with (34) for p = 2 and τ = 1 to conclude that with
confidence at least 1− δ,

R(sgn(f̂z))−R(fc) ≤ C̃
(

logM
M

) 2rθ
(2+θ)((β+1)(d−1)+2r)

log
2

δ
.

This proves Theorem 3.
Proof of Theorem 4: By Corollary 1 and the same

procedure as in the proof of Theorem 2, Theorem 5 implies
that with confidence 1− δ,

E(π(f̂z))− E(fρ) ≤ C
[(

N logM
M

)
+N−4

]
log

2

δ
.

Taking N =
(
M

logM

)1/5
implies that

E(π(f̂z))− E(fρ) ≤ C
(

logM
M

)−4/5
log

2

δ
.

Now applying Proposition 1 and Tsybakov condition (14),

R(sgn(f̂z))−R(fc) ≤ C

[(
logM
M

)2θ/5

t−θ/2 + t

]
log

2

δ
,

which completes the proof by taking t =
(

logM
M

)4θ/5(2+θ)
.

VI. NUMERICAL EXPERIMENTS

In this section, we illustrate our theoretical results by
numerical experiments. We study the misclassification error
with the least squares loss and hinge loss.

We consider the following probability model for generating
simulated data. Let X be a random vector uniformly distribut-
ed in Sd−1. For given X = x = (x1, x2, . . . , xd), Y ∈ {1,−1}
follows a Bernoulli distribution Pr(Y = 1 | x) = h(x). We
take h(x) = 2f(x)−fmax−fmin

fmax−fmin
, where

f(x) =

3∑
i=1

ϕ(‖x− ei‖/1.5π), for x ∈ Sd−1,

with ϕ(r) = (1 − r)4+(4r + 1), ei = (0, . . . , 0, 1, 0, . . . , 0),
and fmax, fmin are maximum and minimum values of f
respectively.

We estimate the classifier by using the least squares
loss as well as the hinge loss with the CNN architecture
of 0.5M1/3 layers followed by two fully connected lay-
ers having 50, 35 neurons, respectively. Maxpooling with
kernel size 10 is taken after the convolutional layers. In
our experiment, we take various training data sizes M =
{50, 100, 300, 1000, 2000, 5000, 10000} and two different in-
put dimensions of 10, 50. For evaluation, we randomly simu-
late 2000 sample points from a test set with Bayes error 3.6%
for dim10 and 0.85% for dim50. For training the proposed
CNN, as in the literature [22], we use Adam with epoch 5,
learning rate 10−2 and mini batch size M/20.

Table III presents the classification accuracy of the CNN
classifier over 10 independent trails, and Fig. 1, Fig. 2 draw
the trace plots of the excess misclassification error for various
sample sizes. The results confirm well the theoretical results
that the excess misclassification error converges to 0 as the
sample size increases.
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TABLE III
CLASSIFICATION ACCURACY

dim=10
50 100 300 1000 2000 5000 10000

MSE 63.75 83.80 90.85 94.55 95.35 95.85 95.09
Hinge 44.50 77.80 81.19 93.85 93.95 95.85 95.34
dim=50

50 100 300 1000 2000 5000 10000
MSE 75.85 91.09 96.45 96.19 95.60 96.80 97.80
Hinge 51.95 88.30 89.59 90.25 96.19 95.69 96.90

Fig. 1. Excess misclassification error with respect to different sample sizes
and the least squares loss

VII. CONCLUSION

In this paper we have studied the Lp approximation by deep
CNNs with 1 ≤ p ≤ ∞ using efficient cubature formulae and
some other techniques from spherical analysis and approxi-
mation theory. Based on the obtained approximation orders,
we have established excess misclassification error rates of
deep CNN-based classifiers by deriving some generalization
error bounds with respect to the p−norm loss. In addition,
we showed that CNN-based classifiers can achieve the almost
optimal rate by imposing a Tsybakov noise condition on the
data distribution.

APPENDIX A
STRUCTURE OF DEEP NETWORK FOR APPROXIMATION

The main idea to approximate the discretization of the inte-
gral linear operator Ln(f), i.e.

∑m
j=1 λjαn(f)(zj)K̃n(〈zj , ·〉)

is conducted by approximating ridge functions K̃n(〈zj , ·〉)
using deep CNNs. In this part, we describe the structure of
our construction.

We first use J layers to realize features {〈zj , x〉}mj=1, where
we apply the following two lemmas proved in [37] by stacking
{zj ∈ Sd−1}mj=1 into a sequence W and factorizing it into
convolutions of filters.

Lemma 6: Let S ≥ 2 and W = (Wk)
∞
k=−∞ be a sequence

supported in {0, · · · ,L} with L ≥ 0. Then there exists a finite
sequence of filters

{
w(j)

}p
j=1

each supported in {0, · · · , S}
with p ≤ d LS−1e such that the following convolutional factor-
ization holds true

W = w(p) ∗ w(p−1) ∗ · · · ∗ w(2) ∗ w(1).

Lemma 7: Let {w(k)}Jk=1 be a set of sequences supported
in {0, 1, . . . , S}. Then

T (J) · · ·T (2)T (1) = T (J,1) := (Wi−k)i=1,...,d+JS,k=1,...,d

(40)

Fig. 2. Excess misclassification error with respect to different sample sizes
and the hinge Loss

is a Toeplitz matrix in R(d+JS)×d associated with the filter
W = w(J) ∗ · · · ∗ w(2) ∗ w(1) supported in {0, 1, · · · , JS}.
Define a sequence W supported in {0, 1, . . . ,md − 1} by
stacking {zj}mj=1 in reversed orders as W(j−1)d+(d−i) = (zj)i,
i ∈ {1, . . . , d}. It is constructed in such a way that the (jd)-
th row of the matrix T (J,1) is exactly the row vector zTj .

From Lemma 6, we can get a sequence of filters
{
w(j)

}J
j=1

supported in {0, 1, . . . , S} with J ≥ d mdS−1e satisfying W =

w(J) ∗ w(J−1) ∗ · · · ∗ w(2) ∗ w(1). Note that here we take
{w(j)}Jj=p+1 to be the delta sequence δ0 given by (δ0)0 = 1
and (δ0)k = 0 for k ∈ Z \ {0}. Then from Lemma 7, these
filters yield a Toeplitz type convolutional matrix belonging to
R(d+JS)×d, that is,

T (J) · · ·T (2)T (1) = T (J,1) = (Wi−k)i=1,...,d+JS,k=1,...,d .

Then we construct the bias vectors b(j) satisfying b
(j)
S+1 =

. . . = b
(j)
dj−S for j = 1, . . . , J. Let b(1) = −

∥∥w(1)
∥∥
1

1d0 and

b(j) =
(

Πj−1
p=1

∥∥∥w(p)
∥∥∥
1

)
T (j)1dj−1

−
(

Πj
p=1

∥∥∥w(p)
∥∥∥
1

)
1dj−1+S

(41)

for j = 2, . . . , J, where ‖w‖1 =
∑∞
k=−∞ |wk| and 1` is the

constant 1 vector in R`. With the choice of these bias vectors
we know from [38, Lemma 3] that

h(J)(x) = T (J) · · ·T (2)T (1)x+B(J)1dJ = T (J,1)x+B(J)1dJ ,

where B(J) = ΠJ
p=1

∥∥w(p)
∥∥
1
. Together with the definition of

W we know the components of h(J)(x) satisfy(
h(J)(x)

)
jd

= 〈zj , x〉+B(J), j = 1, . . . ,m.

After applying the downsampling operator to h(J) we get the
features, that is,

Dd

(
h(J)(x)

)
=



〈z1, x〉
...

〈zm, x〉
0
...
0


+B(J)1b(d+JS)/dc ∈ RD2 . (42)

The next step is to construct a fully connected (J + 1)-
th layer of width D1 = (2N + 3)D2 to generate functions
σ(〈zj , x〉 − ti) with ti = −1 + i−2

N for j = 1, . . . ,m and
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i = 1, . . . , 2N + 3. Here we choose the connection matrix
F (J+1) in a block form as

F (J+1) =


12N+3 O O · · · O
O 12N+3 O · · · O
...

. . . . . .
...

O · · · O 12N+3

 ∈ RD1×D2

(43)

and the bias vector

b
(J+1)
(j−1)(2N+3)+i =

{
B(J) + ti, if 1 ≤ j ≤ m,
B(J) + 1, if j > m.

Then the first fully connected layer h(J+1)(x) ∈ RD1 of the
deep network is(

h(J+1)
)
(j−1)(2N+3)+i

=

{
σ (〈zj , ·〉 − ti) , if j ≤ m, 1 ≤ i ≤ 2N + 3,
0, if j > m.

Note that h(J+1) can be seen as a vector contains D2

blocks of equal size 2N + 3, and each j-th block represents
{σ (〈zj , ·〉 − ti)}2N+3

i=1 for j = 1, . . . ,m, while other blocks
are zero vectors.

The last step is to use another fully connected layer to
produce QN (K̃n). Notice that

QN (K̃n) = N

2N+3∑
i=1

(
LN

({
K̃n(tk)

}2N+2

k=2

))
i

σ (· − ti)

with LN : R2N+1 → R2N+3 given for ζ = (ζi)
2N+1
i=1 ∈

R2N+1 by

(LN (ζ))i =



ζ2, for i = 1,

ζ3 − 2ζ2, for i = 2,

ζi−1 − 2ζi + ζi+1, for 3 ≤ i ≤ 2N + 1,

ζ2N+1 − 2ζ2N+2, for i = 2N + 2,

ζ2N+2, for i = 2N + 3.

Take the vector ΘN ∈ R2N+3 in terms of the linear operator
LN as

ΘN = NLN
({

K̃n(ti)
}2N+2

i=2

)
.

For the (J + 2)-th fully connected layer, we choose the
connection matrix F (J+2) as

F (J+2) =


ΘT
N O O · · · O
O ΘT

N O · · · O
...

. . . . . .
...

O · · · O ΘT
N

 ∈ RD2×(2N+3)D2 .

Observe that the jth component of F (J+2)h(J+1)(x) is the
product of ΘT

N and the jth block of h(J+1)(x). And by taking
B(J+2) = ‖K̃n‖C[−1,1] and

b(J+2) =

[
−B(J+2)1m

O

]
∈ RD2×(2N+3)D2 ,

we know that the last layer h(J+2) ∈ RD2 is given by

h(J+2)(x) =

[ [
QN (K̃n) (〈zj , x〉) +B(J+2)

]m
j=1

O

]
. (44)

Finally by taking c(J+2) ∈ RD2 as

c
(J+2)
j =

{
λjαn(f)(zj), if j = 1, . . . ,m,
0, otherwise,

and A = B(J+2)
∑m
j=1 λjαn(f)(zj), the final output function

of our network is

c(J+2) ·h(J+2)(x)−A =

m∑
j=1

λjαn(f)(zj)QN (K̃n) (〈zj , x〉) .

(45)

APPENDIX B
BOUNDING THE COVERING NUMBERS

In this part, we use the construction described in the
previous appendix to prove Lemma 4.

Proof of Lemma 4: For simplicity, we set

CS,R := (S + 1)R.

Since all filters are bounded as ‖w(j)‖∞ ≤ R, j = 1, . . . , J ,
the convolutional matrix T (j) associated with w(j) defined by
(2) satisfy

‖T (j)u‖∞ ≤ CS,R‖u‖∞, ∀u ∈ Rdj−1 .

Note that R ≥ 1. We claim that

‖h(j)‖∞ ≤ 2CjS,R, j = 0, 1, . . . , J. (46)

In fact, h(0)(x) = x ∈ Sd−1 satisfies ‖h(0)(x)‖∞ ≤ 1. For
j = 1, . . . , J , by (1) and the assumptions ‖b(j)‖∞ ≤ R,

‖h(j)(x)‖∞ ≤‖T (j)h(j−1)‖∞ + ‖b(j)‖∞
≤CS,R‖h(j−1)‖∞ +R.

By iteration, this yields

‖h(j)(x)‖∞ ≤ CjS,R + (1 + CS,R + · · ·+ Cj−1S,R )R

≤ CjS,R +
CjS,R − 1

S
≤ 2CjS,R

and verifies our claim.
Consider two functions f, f̃ ∈ H generated by two different

choices of parameters {w(j), b(j), F (J+1), F (J+2), c, A} and
{w̃(j), b̃(j), F̃ (J+1), F̃ (J+2), c̃, Ã} respectively. For any η >
0, if ‖w(j) − w̃(j)‖∞ ≤ η, ‖b(j) − b̃(j)‖∞ ≤ η, ‖F (J+2) −
F̃ (J+2)‖∞ ≤ η, ‖c − c̃‖∞ ≤ η, ‖A − Ã‖∞ ≤ η and F (J+1)

is the same as F̃ (J+1) given by (43), then we claim that the
generated layers {h(j), h̃(j)}J+2

j=0 satisfy

‖h(j) − h̃(j)‖∞ ≤ (2j + 2)CjS,Rη. (47)

The case j = 0 is trivial because h(0)(x) = h̃(0)(x) = x ∈
Sd−1. For j = 1, . . . , J , since σ(u) ≤ |u| for any u ∈ R, we
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have that

‖h(j) − h̃(j)‖∞
≤ ‖T̃ (j)(h(j−1) − h̃(j−1))‖∞

+ ‖(T (j) − T̃ (j))h(j−1)‖∞ + ‖b(j) − b̃(j)‖∞
≤ CS,R‖h(j−1) − h̃(j−1)‖∞ + (S + 1)η‖h(j−1)‖∞ + η

≤ CS,R‖h(j−1) − h̃(j−1)‖∞ + 2CjS,Rη + η,

which verifies our claim

‖h(j) − h̃(j)‖∞ ≤2jCjS,Rη + [1 + CS,R + · · ·+ CjS,R]η

≤(2j + 2)CjS,Rη

since CS,R ≥ 2 and
Cj+1
S,R−1

CS,R−1 ≤ 2CjS,R. Note that F (J+1) =

F̃ (J+1) and for v = (v1, . . . , vD2
) ∈ RD2 , i = 0, 1, . . . ,D2,

j = 1, . . . , 2N + 3,

(F (J+1)v)(2N+3)i+j = vj .

Then we have

‖h(J+1)‖∞ ≤ ‖F (J+1)h(J)‖∞ + ‖b(J+1)‖∞
≤ ‖h(J)‖∞ +R ≤ 3CJS,R

and

‖h(J+1) − h̃(J+1)‖∞
≤ ‖(F (J+1)(h(J) − h̃(J))‖∞ + ‖b(J+1) − b̃(J+1)‖∞
≤ ‖h(J) − h̃(J)‖∞ + η ≤ (2J + 3)CJS,Rη.

For the last layer, since F (J+2), F̃ (J+2) ∈ RD2×D1 and each
row has only (2N + 3) nonzero entries, we have

‖h(J+2)‖∞ ≤ ‖F (J+2)h(J+1)‖∞ + ‖b(J+2)‖∞
≤ 3(2N + 3)RCJS,R +R ≤ 3(2N + 4)RCJS,R

and

‖h(J+2) − h̃(J+2)‖∞
≤ ‖(F (J+2)h(J+1) − b(J+2))− (F̃ (J+2)h̃(J+1) − b̃(J+2))‖∞
≤ ‖F̃ (J+2)(h(J+1) − h̃(J+1))‖∞ + ‖b(J+2) − b̃(J+2)‖∞

+ ‖(F (J+2) − F̃ (J+2))h(J+1)‖∞
≤ (2N + 3)R(2J + 3)CJS,Rη + 3(2N + 3)RCJS,Rη + η

≤ (2J + 7)(2N + 3)RCJS,Rη ≤ 6J(2N + 3)RCJS,Rη.

Finally,

‖f − f̃‖∞
≤ ‖(c− c̃) · h(J+2)‖∞ + ‖c̃ · (h(J+2) − h̃(J+2))‖∞

+ ‖A− Ã‖∞
≤ 3R(2N + 4)D2RC

J
S,Rη + 6J(2N + 3)RCJS,RD2Rη + η

≤ (18N + 31)D2JR
2CJS,Rη ≤ 20D1JS

JRJ+2η.

This implies that an η-net of parameters{
w(j), b(j), F (J+1), F (J+2), c, A

}
∈ RJ(3S+2)+D2+2N+4

yields a 20D1JS
JRJ+2η-net of H. Therefore, for any η > 0,

N (H, η) ≤
(

40D1JS
JRJ+3

η

)J(3S+2)+D2+2N+4

.

This proves the lemma.

APPENDIX C
PROOF OF THEOREM 5

Our basic tools to prove Theorem 5 are the classical Bern-
stein inequality (Lemma 8) and the following concentration
inequality (Lemma 9) which can be found in [11] and [7].

Lemma 8: Let ξ be a random variable on a compact metric
space Z with mean E(ξ) and variance σ2(ξ) = σ2 and {zi}Mi=1

is an independent random sample. If |ξ(z) − E(ξ)| ≤ b for
some b > 0 almost surely, then for any ε > 0,

Prob

{
1

M

M∑
i=1

ξ(zi)− E(ξ) > ε

}
≤ exp

{
− Mε2

2σ2 + 2
3bε)

}
.

(48)
Lemma 9: Let 0 ≤ τ ≤ 1, b > 0, c > 0, and G be a

function set defined on a probability space (Z, ρ) such that
for each g ∈ G, E(g) :=

∫
Z
g(z)dρ ≥ 0, ‖g − E(g)‖∞ ≤ b

almost surely and E(g2) ≤ c(E(g))τ . Then for any ε > 0 and
random sample {zi}Mi=1, there holds

Prob

{
sup
g∈G

E(g)− 1
M
∑M
i=1 g(zi)√

(E(g))τ + ετ
> 4ε1−τ/2

}

≤ N (G, ε) exp

{
− Mε2−τ

2(c+ 1
3bε

1−τ )

}
.

(49)

Now we are in a position to prove Theorem 5.
Proof of Theorem 5: Since φ(1) = 0, by the convexity,

we know that φ is nondecreasing on [1,∞) and nonincreasing
on (−∞, 1]. Hence fφρ (x) ∈ [−1, 1] on X and for any f ∈ H,

Ez(π(f)) ≤ Ez(f), and Ez(f̂z) ≤ Ez(f),

which implies that

Ez(π(f̂z))− Ez(f) ≤ 0, ∀ f ∈ H.
It follows that with f̂ = arg inff∈H E(f), we have

E(π(f̂z))− E(fφρ )

= {E(f̂)− E(fφρ )}+ {E(π(f̂z))− Ez(π(f̂z))}
+ {Ez(π(f̂z))− Ez(f̂)}+ {Ez(f̂)− E(f̂)}
≤ {E(f̂)− E(fφρ )}+ {Ez(f̂)− Ez(f

φ
ρ ) + E(fφρ )− E(f̂)}

+ {E(π(f̂z))− E(fφρ ) + Ez(f
φ
ρ )− Ez(π(f̂z))}

=: D(H) + S2(H) + S1(H). (50)

We then proceed in three steps.
Step 1: The estimation of S2(H).

Consider the random variable ξ on (Z, ρ) given by

ξ(z) = φ(yf̂(x))− φ(yfφρ (x)).

Note that E(ξ) = E(f̂)−E(fφρ ) = D(H) ≥ 0. Since ‖f̂‖∞ ≤
B, we know that |ξ(z)| ≤ C ′0 = ‖φ‖L∞[−max{B,1},max{B,1}]
implying |ξ − E(ξ)| ≤ 2C ′0 almost surely. Since (φ, ρ) has
a variancing power τ ∈ [0, 1], we have σ2(ξ) ≤ E(ξ2) ≤
C1 (D(H))

τ . Therefore, the following holds according to
Lemma 8,

Prob

{
1

M

M∑
i=1

ξ(zi)− E(ξ) > ε

}

≤ exp

{
− Mε2

2C1 (D(H))
τ

+ 4
3C
′
0ε

}
:=

δ

2
.
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Setting the probability bound to be δ
2 and solving the quadratic

equation for ε tells us that with confidence at least 1− δ/2,

1

M

M∑
i=1

ξ(zi)− E(ξ)

≤
2
3C
′
0 log 2

δ +
√

4
9 (C ′0)2(log 2

δ )2 + 8MC1 log 2
δ (D(H))

τ

M

≤
4C ′0 log 2

δ

3M
+

√
8C1 log 2

δ (D(H))
τ

M
.

Applying the elementary inequality with the dual number p′ =
p
p−1 of p ∈ (1,∞),

ab ≤ 1

p
ap +

1

p′
bp
′
, ∀a, b > 0 (51)

to p = 2
2−τ , p′ = 2

τ , a =
√

8C1 log 2
δ /M and b =√

(D(H))
τ , we get√
8C1 log 2

δ (D(H))
τ

M

≤ (1− τ

2
)

(
8C1 log 2

δ

M

)1/(2−τ)

+
τ

2
D(H).

Hence with confidence at least 1− δ/2, we have

1

M

M∑
i=1

ξ(zi)− E(ξ)

≤
4C ′0 log 2

δ

3M
+

(
8C1 log 2

δ

M

)1/(2−τ)

+D(H).

(52)

Step 2: The estimation of S1(H).
Choose a function set G = {g(z)φ(yπ(f)(x)) − φ(yfφρ (x)) :
f ∈ H}, then for every g ∈ G, ‖g‖∞ ≤ φ(−1), E(g) =
E(π(f))− E(fφρ ) ≥ 0, ‖g − E(g)‖∞ ≤ 2φ(−1) and E(g2) ≤
C1(E(g))τ . Note that for every g1, g2 ∈ G we know ‖g1 −
g2‖∞ ≤ |φ′+(−1)|‖f1−f2‖∞, which means an ε

|φ′+(−1)| -cover
of H generates an ε-cover of G, that is

N (G, ε) ≤ N

(
H, ε

|φ′+(−1)|

)
.

Applying Lemma 9 to G, we obtain, for any ε > 0 and ∀g ∈ G,

E(g)− 1

M

M∑
i=1

g(zi) ≤ 4ε1−τ/2
√

(E(g))
τ

+ ετ (53)

holds true with confidence at least

1−N

(
H, ε

|φ′+(−1)|

)
exp

{
− mε2−τ

2
(
C1 + 2

3φ(−1)ε1−τ
)} .

(54)
Applying the inequality (51) to the upper bound in (53) with
f = f̂z ∈ H, we find

4ε1−τ/2
√(
E(π(f̂z))− E(fφρ )

)τ
+ ετ

≤ τ

2

(
E(π(f̂z))− E(fφρ )

)
+ (1− τ/2)41/(1−τ/2)ε+ 4ε

≤ 1

2

(
E(π(f̂z))− E(fφρ )

)
+ 12ε. (55)

Step 3: The estimation of E(π(f̂z))− E(fφρ ) using (50).
Take ε = ε∗. Then the confidence given by (54) is at least

1− δ
2 . Thus by combining (50), (52), (53) and (55), we know

that with confidence at least 1− δ,

E(π(f̂z))− E(fφρ ) ≤ 4D(H) +
8C ′0 log 2

δ

3M

+ 2

(
8C1 log 2

δ

M

)1/(2−τ)

+ 24ε∗.

This completes the proof of the theorem.
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