百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Graphene face masks that battle bacteria

Mirror Fung

 

Dr Ye
The research team led by Dr Ye Ruquan developed a new method for making anti-bacterial graphene masks quickly and cost effectively.

 

A new method for making anti-bacterial graphene masks quickly and cost effectively has been discovered by Dr Ye Ruquan, Assistant Professor in the Department of Chemistry, and his team at City University of Hong Kong (CityU). The masks have the potential to combat viruses as well.

Commonly used surgical masks are not antibacterial and so harmful elements can remain active for hours, which poses a risk of secondary infection. However, graphene is known for its antibacterial properties, and so scientists have studied the possibility of making graphene masks.

“In previous studies conducted a few years ago, we found that direct writing on commercial polyimide films [a polymeric plastic material] or other biomaterials using a commercial CO2 infrared laser system can generate 3D porous graphene, which makes the fabrication of graphene masks quick and easy,” Dr Ye said.

Preliminary studies on the anti-bacterial graphene masks are already underway. “Our laser-induced graphene [LIG] material can kill almost all the E. coli and aerosolized bacteria. The bacteria-killing activity is induced by the graphene–bacteria interactions,” Dr Ye explained. Under the photothermal effect of the sun, it was possible to kill bacteria with an efficiency of 99.998% within 10 minutes.

LIG
Most carbon containing materials can be converted into graphene using a commercial CO2 infrared laser system.

 

In addition, the team has recently begun testing LIG material's ability to combat viruses and has achieved very promising results. Initial tests on two coronaviruses found that the LIG material inactivated over 90% of the virus in five minutes and all of them in 10 minutes.

Conventional methods for producing graphene include chemical vapour deposition in which graphene is first grown on a porous substrate at high temperatures and the substrate is subsequently etched; and the hydrothermal method in which graphene oxide collects together and is simultaneously reduced in hot water.

But these two methods have poor control over the shape of the product and require high-temperature conditions, lengthy synthesis routes, and high costs.

Dr Ye’s breakthrough combines graphene preparation and patterning into a single step. The method is time and cost effective and may help to resolve the problem of sourcing raw materials. Most carbon containing materials, for example cellulose or paper, can be converted into graphene.

“We can also use biomass or biomaterials as well. It is a green technique,” Dr Ye pointed out.

In addition, the conversion can be carried out under ambient conditions with a laser system found in most machine shops. “I think production streamlining should be simple and the price is expected to fall in between that of a surgical mask and a N95 mask,” he said.

Under computer control, the LIG can be patterned into various shapes with a porous structure. The masks are made comfortable for breathing by adjusting the laser power to modify the size of the pores.

prototype
Dr Ye demonstrates the graphene face mask prototype.

 

“Our next plan is to evaluate the antivirus efficiency and develop a reusable strategy,” Dr Ye said. 

The LIG material has a range of other applications such as fabricating antibacterial medical devices.

“We have made a face mask prototype, and with an optimal structure, we envision releasing it to the market shortly after obtaining the certified tests,” Dr Ye added.

The team has also fabricated a hygroelectric generator powered by human breath that can self-report on the condition of a mask. The adhesion of bacteria or atmospheric particles on the LIG changes surface properties and affects moisture-induced potential, which provides information on the condition of a mask. This kind of mask improves the protection effect, which is especially important for frontline workers.

The CityU research team includes Huang Libei, Su Jianjun, Song Yun, PhD students, and Xu Siyu, MSc student, all from the Department of Chemistry. The work is collaborated with the teams from Professor Tang Ben-zhong, the Hong Kong University of Science and Technology; Dr Zhu Chunlei, Nankai University and Dr Chen Sijie, Karolinska Institutet (Hong Kong).

 

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐官网娱乐城彩金| 顶级赌场dj| 澳门百家乐官网手机软件| 麻将百家乐筹码| 东莞百家乐的玩法技巧和规则| 门源| 百家乐推筒子| 网上赌百家乐官网被抓应该怎么处理| 百家乐官网手机壳| 大发888舍出同线牌| 百家乐官网群的微博| 申博娱乐城开户| 24山吉凶视频| 百家乐官网娱乐城提款| 百家乐大| 百家乐官网必赢术| 大发888官网z46| 百家乐博彩通网| 百家乐官网赌博论谈| 赌博百家乐探讨| 百家乐官网现金网平台排行榜| 百家乐桌出租| 新利国际开户| 百家乐流水打法| 双桥区| 大发888 casino| 玩百家乐优博娱乐城| 百家乐官网平台开发| 水果机技巧规律| 百家乐编单短信接收| 百家乐官网模拟游戏下载| 大发888黄金版下载| 百家乐庄闲机率| 太阳城百家乐官网筹码租| 大发888网站是多少呢| 星河百家乐官网的玩法技巧和规则| 葫芦岛市| 皇冠在线娱乐城| 百家乐游戏解码器| 百家乐游戏平台架设| 长江百家乐官网的玩法技巧和规则|