百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Extremely strong and yet incredibly ductile multicomponent alloys developed

 

 

The new allow Al7Ti7 exhibits a superior strength of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature.
The new alloy Al7Ti7 exhibits a superior strength of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature.

Overcoming the critical issue of the strength-ductility trade-off dilemma for structural materials 

A research team led by City University of Hong Kong (CityU) has developed a novel strategy to develop new high-strength alloys which are extremely strong and yet also ductile and flexible. The strategy overcomes the critical issues of the strength-ductility trade-off dilemma, paving the way for developing innovative structural materials in future. 

Multiple-principal element alloys, generally referred as high-entropy alloys (HEAs), is a new type of materials constructed with equal or nearly equal quantities of five or more metals. They are currently the focus of attention in materials science and engineering due to their potentially desirable properties for structural applications. Yet most of the alloys share the same key detrimental feature: the higher the strength of an alloy, the less the ductility and toughness, meaning that strong alloys tend to be less deformable or stretchable without fracture. 

Recently, however, a research led by Professor Liu Chain Tsuan, University Distinguished Professor of the Department of Materials Science and Engineering at CityU, has found a breakthrough solution to this daunting decades-long dilemma— by making high-entropy alloys both strong and yet also very ductile through massive precipitation of nanoscale particles. This cutting-edge research has just been published in the latest issue of the prestigious journal Science, titled “Multicomponent intermetallic nanoparticles and superb mechanical behaviours of complex alloys”. 

Solving strength-ductility trade-off 

“We are able to make a new high-entropy alloy called Al7Ti7 ((FeCoNi)86-Al7Ti7) with a superior strength of 1.5 gigapascals and ductility as high as 50% in tension at ambient temperature. Strengthened by nanoparticles, this new alloy is five times stronger than that of the iron-cobalt-nickel (FeCoNi)-based alloy,” says Professor Liu. 

“Most conventional alloys contain one or two major elements, such as nickel and iron to manufacture,” he explains. “However, by adding additional elements of aluminium and titanium to form massive precipitates in the FeCoNi-based alloy, we have found both the strength and ductility have significantly increased, solving the critical issue of the trade-off dilemma for structural materials.” 

Moreover, high-strength alloys usually face plastic deformation instability, known as the necking problem, meaning that when the alloy is under a high strength, its deformation would become unstable and very easily lead to necking fracture (localized deformation) with very limited uniform elongation. But the team has further found that by adding “multicomponent intermetallic nanoparticles”, meaning complex nanoparticles made of different element atoms, it can greatly strengthen the alloy uniformly by improving the deformation instability. 

Tackling “necking problem” 

And they have found the ideal formula for these complex nanoparticles, which consists of nickel, cobalt, iron, titanium and aluminium atoms. Professor Liu explains that each of nanoparticle measuring 30 to 50 nanometres only. The iron and cobalt atoms which replace some of the nickel components helps to reduce the valence electron density and improve the new alloy’s ductility. On the other hand, replacing some of the aluminium with titanium largely reduces the impact of moisture in air to avoid induced embrittlement in this new strong alloy. 

“This research opens up a new design strategy to develop superalloys, by engineering multicomponent nanoparticles to strengthen complex alloys to achieve superb mechanical properties at room and elevated temperatures,” says Professor Liu. 

He believes that the new alloys developed with this novel strategy will perform well in temperatures ranging from -200°C to 1000°C. Hence they can act as a good base to further develop for structural use in cryogenic devices, aircraft and aeronautic systems and beyond. 

Professor Liu is the corresponding author of the paper, and Yang Tao, his PhD student and current senior research associate at CityU’s Department of Materials Science and Engineering is the first-author. Other co-authors include Chair Professor Kai Jijung, Assistant professor Dr Alice Hu, post-doc fellows Zhao YiluTong YangWei Jie and PhD student Chen Da from CityU’s Department of Mechanical Engineering and Center for Advanced Structural Materials; together with Dr Jiao Zengbao, Assistant Professor of Department of Mechanical Engineering at the Hong Kong Polytechnic University; Professor Han Xiaodong and Dr Cai Jixiang from the Institute of Microstructure and Property of Advanced Materials of Beijing University of Technology; Professor Lu Ke, Director of Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences; and Professor Liu Yong from the State Key Laboratory of Powder Metallurgy, who is also the director of Powder Metallurgy Research Institute at Central South University.r

From left to right, front row: Professor Kai Jijung, Professor Liu Chain Tsuan, Dr. Jiao Zengbao; back row: Zhao Yilu, Yang Tao and Dr Luan Junhua, Senior Research Associate at Inter-University 3D Atom Probe Tomography Unit at CityU.
From left to right, front row: Professor Kai Jijung, Professor Liu Chain Tsuan, Dr. Jiao Zengbao; back row: Zhao Yilu, Yang Tao and Dr Luan Junhua, Senior Research Associate at Inter-University 3D Atom Probe Tomography Unit at CityU.

Related stories: 

Nanotwin deformation pattern in stainless steel revealed Paves the way to develop materials with higher strength and ductility

A low-cost and high-performance multinary intermetallic compound as an active electrocatalyst for hydrogen production 

Subscribe to newsletter

 

Contact Information

Back to top
百家乐网络赌博网址| 玩百家乐官网怎么才能赢| 网上百家乐官网的打法| 德州扑克保险| pc百家乐模拟游戏| 百家乐官网什么方法容易赢| 百家乐官网游戏客户端| 川宜百家乐官网分析软件| 皇冠网上投注网| 德州扑克高级技巧| 名仕百家乐的玩法技巧和规则| 如何玩百家乐游戏| 洪江市| 瑞鑫棋牌下载| 百家乐社区| 澳门百家乐怎么玩| 大发扑克网站| 太阳城招聘| 大发888娱乐场网页版| 威尼斯人娱乐城会员注册| 百家乐博百家乐的玩法技巧和规则| 立即博百家乐现金网| 豪享博百家乐官网的玩法技巧和规则 | 真人娱乐城| 百家乐官网博彩安全吗| 机械手百家乐的玩法技巧和规则| 申博百家乐有假吗| 百家乐娱乐平台代理佣金| 百家乐机器图片| 苹果百家乐的玩法技巧和规则| 怎么赢百家乐的玩法技巧和规则| 威尼斯人娱乐城备用网址| 大发888官方下载网址| 百家乐投注网| 红桃K百家乐娱乐城| 百家乐缩水软件| 金彩百家乐的玩法技巧和规则| 全讯网即时线路| bet365体育在线投注| 丹寨县| 澳门百家乐官网怎么才能赢钱|