百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough in High-strength but Ductile Ordered Intermetallic Alloys

 

The strength-ductility trade-off has always been a dilemma in materials science. The higher the strength of a material, the less the ductility and toughness, meaning that strong materials tend to be less deformable or stretchable without fracture. Professor Liu Chain-tsuan, University Distinguished Professor in the College of Engineering and Senior Fellow of the Hong Kong Institute for Advanced Study (HKIAS) at CityU, together with his team member Dr Yang Tao, Assistant Professor in the Department of Materials Science and Engineering, has developed a novel alloy design strategy to overcome this challenge, paving the way for fabricating materials for operating in extreme temperatures and aerospace systems.

Alloy
The new high-entropy alloy is extremely strong but ductile.

 

“Most conventional alloys comprise one or two major elements, such as nickel and iron,” Professor Liu explained. “However, by adding aluminium and titanium to form massive precipitates in an iron-cobalt-nickel (FeCoNi)-based alloy, we found a significant increase in both strength and ductility.”

In the prestigious scientific journal Science, they reported that their high-entropy alloy had a superior strength of 1.5 gigapascals, which is five times stronger than FeCoNi based-alloys, and had ductility as high as 50% in tension at ambient temperature. 

They also found that adding multicomponent intermetallic nanoparticles can greatly enhance plastic deformation stability, avoiding the common problem of early necking fracture. 

Professor Liu believed this innovative strategy would allow the development of alloys that can perform well in temperatures ranging from -200°C to 1000°C, thus providing a good base for developing new cryogenic devices, as well as aircraft and high temperature systems, such as aeronautical engineering applications. 

In their other research also reported in Science recently, they revealed a new way to resolve the strength-ductility trade-off effectively by forming disordered nanoscale layers at grain boundaries in ordered intermetallic alloys. 

By adding 1.5 to 2.5 atomic percent of boron to an intermetallic alloy, they found that distinctive nanoscale layers were formed between the orderly packed grains in the alloy. “This serves as a buffer zone between adjacent grains, which enables plastic-deformation extensively at the grain boundaries, resulting in the large tensile ductility at an ultra-high yield strength level,” said Dr Yang, who is the first author of the research. 

With nanolayers formed at the grain boundaries, the alloy showed an ultra-high yield strength of 1.6 gigapascals, with tensile ductility of 25% at ambient temperature. It also maintained the alloy’s strength with excellent thermal stability at high temperature.

“The discovery of this disordered nanolayer in the alloy will have an impact on the development of high-strength materials in the future, such as structural materials for applications in high-temperature settings, like aerospace, aeronautics, nuclear power and chemical engineering,” said Professor Liu.

Professor Liu, Dr Yang and the team will continue to work on ultra-high strength steels, multicomponent high-entropy alloys, lightweight materials, and nanostructured materials for various applications. 

Prof Liu and team
(From left, front row) Professor Liu Chain-tsuan, and his research team members Dr Yang Tao, (back row, from left) Dr Zhao Yilu and Dr Luan Junhua.

 

This research article originated from CityU RESEARCH.

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
宜君县| 大发888有手机版本吗| 百家乐官网娱乐天上人间| 玩百家乐都是什么人| 淘金盈娱乐| 星期8百家乐官网的玩法技巧和规则| 尊龙百家乐娱乐场开户注册| 三都| 百家乐官网网站那个诚信好| 大发888在线娱乐下载| 百家乐官网平注常赢打法| 百家乐任你博娱乐场开户注册| 百家乐官网d博彩论坛| 百家乐补牌规律| 赌博启示录| 网上百家乐官网大赢家| tt娱乐城注册| 百家乐榄梯打法| 澳门玩百家乐官网赢1000万| 百家乐永利娱乐平台| 百家乐官网软件编辑原理| 香港百家乐马书| 洛克百家乐的玩法技巧和规则 | 大发888游戏秘籍| 百家乐官网闲9点| 云博娱乐城,| 百家乐摇色子网站| 百家乐官网软件骗人吗| 全讯网信息| 百家乐官网网页qq| 百家乐官网桌现货| 宝都棋牌下载| 百家乐跟路技巧| 澳门玩百家乐官网赢1000万| 湘乡市| 大发888登陆网页游戏| 玩百家乐澳门368娱乐城| 滨海湾百家乐官网娱乐城| 大发888娱乐城怎么玩| 太阳城百家乐看牌| 百家乐官网稳赢战术技巧|