百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough in High-strength but Ductile Ordered Intermetallic Alloys

 

The strength-ductility trade-off has always been a dilemma in materials science. The higher the strength of a material, the less the ductility and toughness, meaning that strong materials tend to be less deformable or stretchable without fracture. Professor Liu Chain-tsuan, University Distinguished Professor in the College of Engineering and Senior Fellow of the Hong Kong Institute for Advanced Study (HKIAS) at CityU, together with his team member Dr Yang Tao, Assistant Professor in the Department of Materials Science and Engineering, has developed a novel alloy design strategy to overcome this challenge, paving the way for fabricating materials for operating in extreme temperatures and aerospace systems.

Alloy
The new high-entropy alloy is extremely strong but ductile.

 

“Most conventional alloys comprise one or two major elements, such as nickel and iron,” Professor Liu explained. “However, by adding aluminium and titanium to form massive precipitates in an iron-cobalt-nickel (FeCoNi)-based alloy, we found a significant increase in both strength and ductility.”

In the prestigious scientific journal Science, they reported that their high-entropy alloy had a superior strength of 1.5 gigapascals, which is five times stronger than FeCoNi based-alloys, and had ductility as high as 50% in tension at ambient temperature. 

They also found that adding multicomponent intermetallic nanoparticles can greatly enhance plastic deformation stability, avoiding the common problem of early necking fracture. 

Professor Liu believed this innovative strategy would allow the development of alloys that can perform well in temperatures ranging from -200°C to 1000°C, thus providing a good base for developing new cryogenic devices, as well as aircraft and high temperature systems, such as aeronautical engineering applications. 

In their other research also reported in Science recently, they revealed a new way to resolve the strength-ductility trade-off effectively by forming disordered nanoscale layers at grain boundaries in ordered intermetallic alloys. 

By adding 1.5 to 2.5 atomic percent of boron to an intermetallic alloy, they found that distinctive nanoscale layers were formed between the orderly packed grains in the alloy. “This serves as a buffer zone between adjacent grains, which enables plastic-deformation extensively at the grain boundaries, resulting in the large tensile ductility at an ultra-high yield strength level,” said Dr Yang, who is the first author of the research. 

With nanolayers formed at the grain boundaries, the alloy showed an ultra-high yield strength of 1.6 gigapascals, with tensile ductility of 25% at ambient temperature. It also maintained the alloy’s strength with excellent thermal stability at high temperature.

“The discovery of this disordered nanolayer in the alloy will have an impact on the development of high-strength materials in the future, such as structural materials for applications in high-temperature settings, like aerospace, aeronautics, nuclear power and chemical engineering,” said Professor Liu.

Professor Liu, Dr Yang and the team will continue to work on ultra-high strength steels, multicomponent high-entropy alloys, lightweight materials, and nanostructured materials for various applications. 

Prof Liu and team
(From left, front row) Professor Liu Chain-tsuan, and his research team members Dr Yang Tao, (back row, from left) Dr Zhao Yilu and Dr Luan Junhua.

 

This research article originated from CityU RESEARCH.

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
足球心水论坛| 丽都百家乐的玩法技巧和规则 | 百家乐电脑游戏高手| 威尼斯人娱乐场 澳门| 噢门百家乐玩法| 大发888娱乐场下载远程| 武汉百家乐官网庄闲和| 免费下百家乐赌博软件| 优博地址| 免费百家乐官网预测| 德州扑克书籍| bodog博狗| 百家乐官网霸王闲| 网上百家乐哪家最好| 优博娱乐在线| 澳门百家乐介绍| 百家乐官网龙虎斗等| 十六浦百家乐的玩法技巧和规则| 百家乐官网如何计算| 百家乐稳赢秘笈| 百家乐官网上分器定位器| 百家乐是娱乐场最不公平的游戏 | 百家乐官网赔率技巧| 百家乐官网真钱电玩| 百家乐技术辅助软件| 百家乐官网洗码| 百家乐网址哪里有| 百家乐官网是骗人的| 巴西百家乐的玩法技巧和规则 | 太阳城百家乐168| 帝王百家乐官网新足球平台| 小孟百家乐的玩法技巧和规则 | 百家乐官网博弈之赢者理论| 哪里有百家乐赌博网站| bet365投注网| 长赢百家乐赌徒| 百家乐节目视频| 澳门百家乐官网棋牌游戏| 奔驰百家乐游戏| 大发888怎么玩能赢| 赌场百家乐赢钱|