百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

CityU develops cutting-edge air monitoring sensor package

Christina Wu

 

Dr Ning (2nd from left, front row) and his research team.
Dr Ning (2nd from left, front row) and his research team.

 

A next-generation compact sensor package developed by City University of Hong Kong (CityU) can measure multiple criteria air pollutantssimultaneously, and can be readily placed in different locations to meet diverse monitoring needs. 

The team developed the microelectronic circuits and a compact sensor platform by integrating high-time resolution sensors. The sensor system can display and store real-time data, then automatically transmit the data via various wireless protocols, including GSM (cell phone network), Wi-Fi, Bluetooth, Xbee, among others, to off-site computers for analysis and display. 

The next-generation compact sensor (right) is smaller than the conventional regulatory air-quality monitoring equipment (left).

The pollutants measured include nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), ozone (O3) and particulate matter (PM2.5), which are important indicators of health risks. Several are emitted by urban traffic.

 Dr Ning Zhi, Assistant Professor in CityU’s School of Energy and Environment, and his team designed, developed and characterised the system extensively to achieve the best performance for challenging monitoring needs.

The sensor package is small, portable and far more suitable to diverse uses than conventional regulatory air-quality monitoring equipment. It is 30cm wide, 30cm high and 22cm long, and weighs 10kg. However, its functions and performance are comparable to the conventional bulky and heavy equipment, but is only one-twentieth of the cost. The package is being considered for use to monitor air quality at different locations in Hong Kong to complement the government’s scheme.

This new development opens a new area in air monitoring, said Dr Ning.

"The package may be battery powered and its portability means it can be placed in locations not possible before by conventional large monitoring systems. This new development opens a new area of air monitoring and allows the deployment of monitoring schemes that target special environmental exposure situations and community monitoring locations, like schools, office buildings and homes." said Dr Ning.

"The package is expected to be widely used in different cities to help research air pollution, air quality management and environmental policy making in the future, and there are plans to augment it to include other important pollutants." he added.

The next-generation compact sensor can be placed in different locations

Dr Ning’s team has also developed a protocol to convert raw data collected by the sensor into the Air Quality Health Index (AQHI) currently used in Hong Kong. In its first public use five of these units were placed along the Standard Chartered Marathon route last month where data were collected and served as the basis to communicate the AQHI values to the runners, organiser and public. The monitoring was conducted successfully.

The research has been partially supported by the Environmental Protection Department and the Innovation and Technology Fund of the Hong Kong Government.

 

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐1个人| 百家乐真人百家乐赌博| 木星百家乐官网的玩法技巧和规则| 百家乐现金网平台排名| 盱眙县| 黄金城百家乐官网免费下载| 皇博国际| 百家乐的路子怎么| 罗盘24山八卦| 百家乐官网娱乐城代理| 威尼斯人娱乐代理| 澳门百家乐官网手机软件| 百家乐官网游戏高手| 榆次百家乐的玩法技巧和规则| 万年县| 澳门玩百家乐赢1000万| 玩百家乐官网凤凰娱乐城| 大发888游戏平台103| 百家乐游戏试玩免费| 新朝代百家乐官网开户网站| 188比分直播网| 百佬汇百家乐的玩法技巧和规则| 免费百家乐官网计划工具| 百乐坊娱乐场| 大发888游戏在线客服| 实战百家乐博彩正网| 女神百家乐官网娱乐城| 大发888官网www.dafa888.com| 澳门百家乐群策略| 大发888 娱乐平台| 百家乐怎么发牌| 娱乐百家乐的玩法技巧和规则| 百家乐是骗人吗| 大发888真钱游戏平台| 金盾百家乐网址| 曼哈顿百家乐官网的玩法技巧和规则 | 百家乐官网园棋牌| 亚洲顶级赌场 塑造品牌神话| 百家乐必胜方法如果你还想继续不看可能后悔一生| 百家乐全透明牌靴| 百家乐官网3式打法微笑心法|