百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

CityU’s new technology prevents post-surgery bacterial infection

Emily Law

 

chu
Research team includes Professor Paul Chu Kim-ho (left) and PhD student Wang Guomin.

 

A research team led by Professor Paul Chu Kim-ho, a materials engineering expert at City University of Hong Kong (CityU), has developed a capacitive coating that kills bacteria when it is charged with electricity. When applied to orthopedic implants such as artificial joints and dental implants, the novel technology can reduce the risk of infection after surgery and help patients recover more quickly.

Professor Chu, Chair Professor in the Department of Physics and the Department of Materials Science and Engineering, and his research team discovered that TiO2 nanotubes doped with carbon (TNT-C) can kill bacteria continuously for a period of time after charging with a small electrical current. Their research has been published recently in the international journal Nature Communications.

The technology is based on previous innovations by Professor Chu and his team on killing bacteria in wounds using a high-voltage plasma jet. This new technology can be applied to materials implanted inside the human body.

In their experiments, the team tested bacteria such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Staphylococcus epidermidis that can grow on implants after a patient undergoes surgery. Professor Chu said the TNT-C could kill bacteria after being charged for 15 minutes with a small direct current of less than 2 volts.

He explained that the positive electrode on the surface of the nanotube coating destroys the cell membranes of the bacteria without affecting normal cells. The capacitive coating kills over 90% of the above mentioned bacteria and the effect lasts for more than five hours after each charging cycle. The effectiveness of the treatment can be maintained for over several weeks if the coating is repeatedly charged.

By adding such a capacitive coating to orthopedic implants like artificial joints or dental implants together with a built-in micro charging device or through wireless charging, the new technology can protect patients from infection after surgery. Throughout the healing process, the technology does not produce any harmful side effects in patients and charging can stop after they have recovered.

“We are very excited about the research outcome,” Professor Chu said. “Currently, patients have to take medication such as antibiotics in the early post-surgery stage to prevent bacterial infection. However, problems such as drug resistance or other side effects may develop. This new technology of charging TNT-C does not have any side effects, and the coating can retain electrical charges to kill bacteria for an extended period of time. This groundbreaking technology can reduce complications arising from bacterial infection and improve the well-being of patients.”

Also, the new technology is demonstrated to have prevented the formation of biofilms that may otherwise cause resistance to medicines like antibiotics.

Professor Chu said the early results of the project, titled “An Antibacterial Platform Based on Capacitive Carbon-Doped TiO2 Nanotubes after Charging with Direct / Alternating Currents”, had been very encouraging. With clinical trials to follow, he hoped that the technology would be applied to medical treatment in the future.   

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
大发888在线娱乐合作伙伴| 澳门百家乐海洋阿强| 申博太阳城管理网| 百家乐官网玩法皇冠现金网| 百家乐最好的投注法| 全讯网365| 网上百家乐官网玩法| 博九网百家乐现金网| 堆龙德庆县| 澳门百家乐骗人| 博九| 百家乐官网翻天粤语| 大发888投注鸿博博彩| 博彩百家乐官网带连线走势图| 连环百家乐的玩法技巧和规则| 百家乐官网三宝| 威尼斯人娱乐场的微博| 澳门百家乐官网海洋阿强| 大发888娱乐城m88| 百家乐网站哪个好| 威尼斯人娱乐城筹码| 真人百家乐官网输钱惨了| 威尼斯人娱乐网注册网址| 百家乐官网号游戏机| 沙龙网上娱乐| 百家乐建材| 贵族百家乐官网的玩法技巧和规则 | 大发888资讯网007| 百家乐论坛博彩啦| 百家乐官网所有技巧| 百家乐最好投注法是怎样的去哪儿能了解一下啊 | 24山飞星图| 博彩百家乐官网规则| 天津太阳城橙翠园| 棋牌百家乐赢钱经验技巧评测网| 网上百家乐官网是真是假天涯论坛 | 百家乐官网1个人| 皇冠开户网| 百家乐投注打三断| 百家乐官网赌场赌场网站| 临邑县|