百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Tiny, soft robot with multi-legs paves the way for drug delivery in the human body

 

CityU team
Professor Wang (front row, right), Dr Shen (front row, left) and members of the CityU team who have developed the novel tiny, soft robot.

 

A novel tiny, soft robot with caterpillar-like legs capable of carrying heavy loads and adaptable to adverse environments has been developed by a research team led by City University of Hong Kong (CityU). The mini delivery-robot could pave the way for medical technology advances, such as drug delivery in the human body.

The highly agile milli-robot is able to leap over 10 times its leg length. Thanks to its multi-leg design, which helps reduce friction significantly, the robot can move efficiently inside surfaces in the body lined with, or entirely immersed in, body fluids, such as blood or mucus.

The research findings have been published in the latest issue of the scientific journal Nature Communications in a paper titled “A Bio-inspired Multilegged Soft Millirobot that Functions in Both Dry and Wet Conditions”.

Dr Shen Yajing, Assistant Professor in CityU’s Department of Biomedical Engineering (BME), who leads the research, said the robot has hundreds of less than 1 mm-long pointed legs, which look like tiny hairs. This greatly reduces the contact area and hence friction with the surface. Laboratory tests show that the multi-legged robot has 40 times less friction than a limbless robot in both wet and dry environments.

soft robot
The highly agile, multi-legged soft robot is adaptable to adverse environment and can carry heavy load.

 

The materials are another key feature. The robot is fabricated with a silicon material called polydimethylsiloxane (PDMS), which is embedded with magnetic particles that enable it to be remotely controlled by applying electromagnetic force. 

“Both the materials and the mutli-leg design greatly improve the robot’s hydrophobic property. And the rubbery piece is soft and can be cut easily to form robots of various shapes and sizes for different applications,” said Professor Wang Zuankai, from CityU’s Department of Mechanical Engineering (MNE), who conceived of this research idea and initiated the collaboration among the researchers.

Controlled by a magnetic manipulator in the experiments, the robot can flap or swing sideways to move forward.

“The rugged surface and changing texture of different tissues in the human body make transportation challenging. Our multi-legged robot shows an impressive performance in various terrains and thus has great potential for drug delivery in the body,” said Professor Wang.

Even when facing an obstacle 10 times higher than its leg length, the robot can easily jump over it with its deformable soft legs. 

The robot also has a remarkable loading ability. Laboratory tests show that it can carry a load 100 times its own weight, which is comparable to a human easily lifting a 26-seat minibus.

“The amazingly strong carrying capability, efficient locomotion and excellent obstacle-crossing ability make the milli-robot extremely suitable for applications in a harsh environment, such as delivering a drug to a designated spot through the digestive system, or carrying out a medical inspection,” added Dr Shen. 

Before conducting further tests on animals and eventually in humans, the research teams will further develop and refine its research in three areas: finding a biodegradable material, studying new shapes, and adding extra features.

“Our aim in the next two to three years is to create a biodegradable robot that will decompose naturally after completing its drug delivery mission,” said Dr Shen.

The co-first authors of the paper are Lu Haojian, PhD student from CityU’s BME, and Dr Zhang Mei from CityU’s MNE. The other co-authors include Yang Yuanyuan, PhD student from BME, and Professor Huang Qiang and Professor Toshio Fukuda from the Beijing Institute of Technology.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
博彩百家乐在线| 百家乐官网娱乐平台备用网址| 六合彩图纸| 百家乐免费试玩游戏| 百家乐官网怎样看点| 澳门百家乐娱乐城网址| 百家乐官网系统分析器| 百家乐官网庄闲收益率| 冠军百家乐官网现金网| 百家乐赌博经历| 百家乐官网娱乐城新闻| 捷豹百家乐的玩法技巧和规则| 百家乐官网一般的庄闲比例是多少| 澳门百家乐单注下注| 合肥百家乐官网赌博游戏机| 百家乐闲和庄| 百家乐官网怎赌才赢钱| 德州扑克大小| 百家乐桌布橡胶| 百家乐官网游戏机的玩法| 新锦江百家乐官网娱乐平台| 金冠娱乐城开户| 基础百家乐的玩法技巧和规则 | 现场百家乐官网百家乐官网| 总统娱乐城能赢钱吗| 百家乐家居| 百家乐官网赚水方| 百家乐官网韩泰阁| 爱玩棋牌官方下载| 东莞水果机遥控器| 试玩区百家乐1000| 鼎龙百家乐官网的玩法技巧和规则| 太阳城百家乐官网赌博害人| 百家乐注码论坛| 百家乐官网用什么平台| 百家乐官网流水打法| 网络百家乐程序| 澳门百家乐赢钱技术| 百家乐龙虎斗扎金花| 百家乐是骗人的么| 百家乐娱乐城棋牌|