百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Neuromedicine breakthrough with Harvard University

 

(From left) Mr Duan Xin, Dr Lin Xudong, Dr Shi Peng, Professor Cheng Shuk Han and Dr Wang Xin.
(From left) Mr Duan Xin, Dr Lin Xudong, Dr Shi Peng, Professor Cheng Shuk Han and Dr Wang Xin.

 

A research team led by City University of Hong Kong (CityU) has found a shortcut for developing new drugs which can potentially reduce time and costs by sorting out high potential candidates out of a long list of chemical compounds, with an accuracy of around 50%.

This breakthrough in neuropharmacology came following five years of collaborated research by CityU’s Department of Biomedical Engineering (BME) and Department of Biomedical Sciences (BMS), and Harvard Medical School. The research is published in the scientific journal Nature Communications and titled “High-throughput Brain Activity Mapping and Machine Learning as a Foundation for Systems Neuropharmacology”.

The research, led by Dr Shi Peng, Associate Professor of BME, provides a platform to predict compounds that have the potential to be developed into new drugs to treat brain diseases. It can help speed up the new drug discovery process and save costs.

“Even a 1% increase in the drug development success rate would make a huge difference for central nervous system (CNS) disorder patients,” Dr Shi explained.

The study used zebrafish, a small vertebrate animal to conduct whole-brain activity mapping, which shows how the brain or the CNS react to the drugs. The setup was streamlined with innovative system to enable large-scale experiments.

“We used robotics, microfluidics and hydrodynamic force to trap and orient an awake zebrafish automatically in 20 seconds, which took 20 minutes in the past. In this way, we can carry out imaging for many zebrafishes in one go. More importantly, our platform can immobilise the fish without anaesthesia, thus avoiding interference,” Dr Shi explained.

Examples of brain activity maps used for predicting compounds’ neuropharmacology.
Examples of brain activity maps used for predicting compounds’ neuropharmacology.

 

The team first built a reference library of brain activity maps for 179 existing CNS drugs. They generated the maps from the brains of thousands of zebrafish larvae, each treated with a clinically used CNS drug. The maps showed the corresponding brain regions that reacted to those drugs. The team then classified these drugs into 10 physiological clusters based on the intrinsic coherence among the maps by machine learning algorithms.

With the reference library in hand and in close collaboration with Dr Wang Xin, Assistant Professor of BMS at CityU, and Dr Stephen Haggarty, Associate Professor at Harvard Medical School, the team went on to carry out information analysis and employed machine learning strategy to predict the therapeutic potential of 121 new compounds.

The machine learning strategy predicted that 30 out of those 121 new compounds had anti-seizure properties. To validate the prediction, the research team randomly chose 14 from the 30 potential anti-seizure compounds to perform behavioural tests with induced seizure zebrafishes.

The result showed that 7 out of 14 compounds were able to reduce the seizures of the zebrafish without causing any sedative effects, implying a prediction accuracy of around 50%. “With this high-speed in vivo drug screening system combined with machine learning, we can provide a shortcut to help identify compounds with significantly higher therapeutic potentials for further development, hence speed up the drug development and reduce the failure rate in the process,” Dr Shi said.

The first co-authors of the paper are Dr Lin Xudong, Research Associate of BME, and Mr Duan Xin, Research Associate of BMS. Other authors include Professor Cheng Shuk Han of BMS, Mr Chan Chung-yuen, BME graduate, and Ms Chen Siya, former Research Associate of BME.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
百家乐平预测软件| 大赢家足球比分| 百家乐怎样玩才会赢钱| 中金时时彩平台| 改则县| 百家乐娱乐开户| 建德市| 威尼斯人娱乐场官网h00| 财神百家乐官网的玩法技巧和规则 | 神人百家乐赌场| 罗马百家乐官网娱乐城| 大发888创建账号翻译| 金钱豹百家乐官网的玩法技巧和规则| 南通棋牌游戏金游世界| 凯发百家乐官网是否是程序控制| 大发888东方鸿运娱乐| 新利网上娱乐| 先锋百家乐的玩法技巧和规则| 澳门百家乐官网棋牌游戏| 516棋牌游戏中心| 波音百家乐现金网投注平台排名导航| 澳门百家乐官网技术| 通江县| 网上百家乐乐代理| 百家乐最常见的路子| bet365备用主页| 百家乐的规则玩法| 百家乐视频世界| 全景网百家乐官网的玩法技巧和规则 | 百家乐几点不用补| 百家乐官网代理打| 百家乐官网稳赢投注方法| 肃北| 百家乐视频下载| 聚众玩百家乐官网的玩法技巧和规则| 龙博线上娱乐| 怎么看百家乐官网走势| e世博百家乐官网娱乐场| 百家乐作弊| 老虎机定位器| 金都百家乐现金网|