百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

CityU new structured thermal armour achieves liquid cooling above 1,000°C; solves challenge presented by Leidenfrost effect since 1756

MICHELLE LIU

 

Members of the CityU research team: (from left in front row) Dr Steven Wang, Professor Wang, Professor Pan Chin, Dr Jiang Mengnan (from left in back row) Mr Liu and Mr Li.
Members of the CityU research team: (from left in front row) Dr Steven Wang, Professor Wang, Professor Pan Chin, Dr Jiang Mengnan; (from left in back row) Mr Liu and Mr Li.

 

A research team led by scientists from City University of Hong Kong (CityU) has recently designed a structured thermal armour (STA) that achieves efficient liquid cooling even over 1,000°C, fundamentally solving a 266-year-old challenge presented by the Leidenfrost effect. This breakthrough can be applied in aero and space engines, as well as improve the safety and reliability of next-generation nuclear reactors.

The research has been led by Professor Wang Zuankai from CityU's Department of Mechanical Engineering (MNE), Professor David Quéré from the PSL Research University, France, and Professor Yu Jihong, Director of the International Center of Future Science, Jilin University and Senior Fellow of the Hong Kong Institute for Advanced Study at CityU.

The findings were published in the latest issue of the highly prestigious scientific journal Nature under the title “Inhibiting the Leidenfrost effect above 1,000?°C for sustained thermal cooling”. It was also highlighted in Nature News & Views.

The Leidenfrost effect is a physical phenomenon discovered in 1756, which refers to the levitation of drops on a surface that is significantly hotter than the liquid's boiling point. It produces an insulating vapour layer and dramatically reduces heat transfer performances at high temperature, which makes liquid cooling on the hot surface ineffective. This effect is most often detrimental and it has remained a historic challenge to suppress this effect.

Figure 1: (a) A STA consists of an array of thick pillars acting as thermal bridges and holding an insulating superhydrophilic membrane that wicks the incoming liquid. This membrane is positioned so as to create channels that can evacuate the vapour (purple arrows). (b) The membrane is made of nanometric silica fibres that are capable of resisting temperatures of up to approximately 1,200°C.
Figure 1: (a) A STA consists of an array of thick pillars acting as thermal bridges and holding an insulating superhydrophilic membrane that wicks the incoming liquid. This membrane is positioned so as to create channels that can evacuate the vapour (purple arrows). (b) The membrane is made of nanometric silica fibres that are capable of resisting temperatures of up to approximately 1,200°C.

 

The CityU-led team constructed a multitextured material with key elements that have contrasting thermal and geometrical properties. The rational design for the STA superimposes robust, conductive, protruding pillars that serve as thermal bridges for promoting heat transfer; an embedded thermally insulating membrane designed to suck and evaporate the liquid; and underground U-shaped channels that evacuate the vapour. It successfully inhibits the occurrence of the Leidenfrost effect up to 1,150 °C and achieves efficient and controllable cooling across the temperature range from 100°C to over 1,150°C. (Figures 1 & 2)

Figure 2: High-speed side and top views of water drops (dyed in orange and having a volume of 17 μl) contacting Sample A (no membrane), Sample B (no channel) and Sample C (STA), all brought to 1,000 °C. Water on Sample C gets constantly pinned and sucked by the membrane, which leads to a lifetime of 0.33s, approximately 50 times smaller than that on Samples A & B.
Figure 2: High-speed side and top views of water drops (dyed in orange and having a volume of 17 μl) contacting Sample A (no membrane), Sample B (no channel) and Sample C (STA), all brought to 1,000 °C. Water on Sample C gets constantly pinned and sucked by the membrane, which leads to a lifetime of 0.33s, approximately 50 times smaller than that on Samples A & B.

 

“This multidisciplinary research project is truly a breakthrough in science and engineering, since it mixes surface science, hydro- and aero-dynamics, thermal cooling, materials science, physics, energy and engineering. Searching for novel strategies to address the liquid cooling of high-temperature surfaces has been one of the holy grails in thermal engineering since 1756. We are fortunate to fundamentally suppress the occurrence of the Leidenfrost effect and thereby provide a paradigm shift in liquid thermal cooling at extremely high temperatures, a mission that has remained uncharted to date,” said Professor Wang.

Professor Wang pointed out that current thermal cooling strategies under extremely high temperatures adopt air cooling measures rather than effective liquid cooling owing to the occurrence of the Leidenfrost effect, especially for applications in aero and space engines and next-generation nuclear reactors.

Figure 3: (a) A smooth spheroidal piece of steel can be covered by thick pillars after wire cutting. Inserting a membrane in the pillars provides a curved STA. (b) STA can also be made on thin films of steel, which makes it flexible. The films can be welded onto flat or cylindrical solids. (c) The armours are tested to be able to provide rapid and efficient cooling, as evidenced by the drop in temperature (red data).
Figure 3: (a) A smooth spheroidal piece of steel can be covered by thick pillars after wire cutting. Inserting a membrane in the pillars provides a curved STA. (b) STA can also be made on thin films of steel, which makes it flexible. The films can be welded onto flat or cylindrical solids. (c) The armours are tested to be able to provide rapid and efficient cooling, as evidenced by the drop in temperature (red data).

 

“The designed STA can be fabricated to be flexible, eliminating the need for additional manufacturing, especially for those surfaces that are hard to be textured directly. This is why the STA possesses huge potential for practical applications,” added Professor Wang. (Figure 3)

Professor Wang, Professor Quéré and Professor Yu are the corresponding authors of the paper. The first authors are Dr Jiang Mengnan and Dr Wang Yang from MNE.

The collaborators are Professor Pan Chin, CLP Power Chair Professor of Nuclear Engineering and Head, Dr Steven Wang, Assistant Professor, Zhang Huanhuan, Research Assistant, Liu Fayu and Li Yuchao, PhD students, from CityU’s MNE; and Professor To Suet and Du Hanheng, PhD student, from the Department of Industrial and Systems Engineering, Hong Kong Polytechnic University.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
华泰百家乐的玩法技巧和规则| 威尼斯人娱乐网网址| 百家乐官网游戏种类| 大发888官方我的爱好| 大发888老虎机技巧| 刀把状的房子做生意| 盈乐博| 百家乐娱乐城反水| 百家乐官网为什么庄5| 百家乐百博亚洲| 清新县| 威尼斯人娱乐城可信吗| 百家乐官网园首选| 百家乐官网园胎教网| 大发888娱乐场解码器| 大世界百家乐现金网| 无极县| 百家乐看图赢钱| 皇冠网百家乐赢钱| 皇冠网站| 百家乐娱乐城体验金| 百家乐视频游戏盗号| 百家乐官网赢钱| 香港六合彩开奖记录| 百家乐的注码技巧| 百家乐登封代理| 百家乐官网怎么才会赢| 盈得利| 真人游戏大全| 百家乐搏牌| 2024属虎人全年运势| 真人百家乐官网策略| 白朗县| 六合彩历史开奖记录| 实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 大发888 赌博网站| 百家乐官| 钱百家乐取胜三步曲| 百家乐官网真人视频出售| 作弊百家乐官网赌具| 澳门百家乐官网打法百家乐官网破解方法 |