百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Novel electrocatalysts for hydrogen production offer hope for solving the energy crisis

 

Research teams co-led by (from left) Professor Lu Jian and Dr Li Yangyang have developed two novel electrocatalysts for hydrogen production.
Research teams co-led by Professor Lu Jian (left) and Dr Li Yangyang have developed two novel electrocatalysts for hydrogen production.

Two efficient and inexpensive novel electrocatalysts for hydrogen production offering sustainable green solutions for the energy crisis have been developed by City University of Hong Kong (CityU).

Hydrogen is a clean and sustainable alternative to fossil fuels while the production of low-cost, high-performance hydrogen evolution catalysts is a core problem in the energy field.

The electrocatalyst is based on two-dimensional mineral gel nanosheets.
The electrocatalyst is based on two-dimensional mineral gel nanosheets.

A research team co-led by CityU materials scientists has recently developed an innovative, ultra-stable and highly efficient hydrogen evolution reaction (HER) electrocatalyst.

Electrochemical HER is a widely used hydrogen-generation method. Commercial HER electrocatalysts are made from expensive precious metals. A promising type of HER electrocatalyst intensively studied by scientists is single-atom catalysts for their potential in catalytic HER applications because of their high activity, maximised atomic efficiency, and minimised catalyst usage. However, the fabrication of single-atom catalysts is generally complicated, and requires a lot of energy and time.

The new electrocatalyst is based on two-dimensional mineral gel nanosheets and does not contain any precious metals. It can be produced on a large scale and help achieve a lower hydrogen price in the future.

“Compared with other common single-atom substrate precursors, such as porous frameworks and carbon, we found that mineral hydrogels have great advantages for the mass production of electrocatalysts owing to the easy availability of the raw materials, a simple, environmentally friendly synthetic procedure, and mild reaction conditions,” said Professor Lu Jian, Chair Professor in the Department of Mechanical Engineering (MNE) and the Department of Materials Science and Engineering (MSE) at CityU, who led the research.

The experiments found that the new catalyst exhibits excellent electrocatalytic activity, long-term durability and ultra-stability.

The findings were published in Nature Communications under the title “Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution”.

The first author of the paper is Dr Lyu Fucong in MNE. The corresponding authors are Professor Lu, Dr Li Yangyang, Associate Professor in MSE, and Dr Sun Ligang, from the Harbin Institute of Technology.

The electrocatalyst has a dual-phase nanostructure.
The electrocatalyst has a dual-phase nanostructure.

Another breakthrough by Professor Lu’s team is a new type of hydrogen evolution catalyst.

“Using a simple method called magnetron co-sputtering, my research team has successfully produced a high-performance, low-cost substitute for platinum-based electrocatalysts, providing an effective solution to this problem,” said Professor Lu.

The new electrocatalyst, based on AlMnRu (aluminium, manganese and ruthenium) films, has a crystalline-amorphous (non-crystalline) dual-phase nanostructure. Dual-phase materials are needed because each phase has separate benefits: the local chemical inhomogeneity, short-range order and severe lattice distortion in the nanocrystalline phase are desirable, while the amorphous phase offers abundant active sites with a lower energy barrier for hydrogen evolution reaction.

“This aluminium-based alloy electrocatalyst has unique bonding states, a small lattice size, and crystalline/amorphous coexistence, providing a structural basis for achieving high catalytic efficiency,” Prof Lu explained. “We use aluminium rather than a noble metal as the principal element of the catalyst, and ruthenium, which is cheaper than platinum, as the noble metal component.”

The innovation was published in the top academic journal Science Advances, titled "A crystal-glass nanostructured Al-based electrocatalyst for hydrogen evolution reaction".

Dr Liu Sida, a former postdoctoral fellow at CityU (currently a professor at Shandong University), and Li Hongkun, an MSE PhD student, are the co-first authors. The corresponding authors are Professor Lu and Dr Li from CityU, and Professor Wu Ge from Xi'an Jiaotong University. Professor Wu obtained his PhD from CityU. Other researchers from CityU include Dr Zhou Binbin, a former postdoc in MNE and currently a Research Associate Professor at the Shenzhen National Institute of Advanced Electronic Materials Innovation), Zhong Jing and Li Lanxi, both MSE PhD students, and Yan Yang, an MNE PhD student.

YOU MAY BE INTERESTED

Contact Information

Communications and Institutional Research Office

Back to top
好运来百家乐官网现金网| 大连娱网棋牌打滚子| 属虎和属鼠合伙做生意| 大发888真人真钱网址| 荷规则百家乐官网的玩法技巧和规则 | 百家乐小路规则| 江北区| 真人百家乐蓝盾娱乐平台| 中山市| 百家乐赌博技巧网| 赌博百家乐官网秘籍| 二八杠网站| 百家乐官网顺序| 德州扑克女王| 澳门百家乐洗码提成查询| 澳门百家乐官网庄闲的玩法| 百家乐技巧秘| 澳门百家乐官网经| 百家乐官网玩法皇冠现金网| 大发888新址 | 克拉克娱乐城| 世嘉百家乐的玩法技巧和规则 | 百家乐免| 百家乐规则技法| 百家乐官网分析概率原件| 威尼斯人娱乐城注册送彩金| 百家乐存在千术吗| 新2百家乐官网娱乐城| 伯爵百家乐的玩法技巧和规则| 豪享博百家乐官网的玩法技巧和规则 | 真人百家乐蓝盾娱乐场| 百家乐官网qq游戏| 中西区| 澳门顶级赌场娱乐平台| 红桃K百家乐的玩法技巧和规则 | 88真人娱乐城| 威尼斯人娱乐城玩百家乐| 做生意必须看风水吗| 网络百家乐官网漏洞| 百家乐官网中B是什么| 皇冠足球網|