百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

New inventions boost renewable energy

 

A materials scientist at City University of Hong Kong (CityU) and his research teams are advancing the frontiers of renewable energy research with two significant inventions that tackle the looming energy crisis.

Led by Professor He Jr-hau from the Department of Materials Science and Engineering, the inventions include the development of a novel wave energy device that generates energy while reducing carbon dioxide (CO2), as well as a new photoelectrochemical system that will increase the efficiency of solar-to-hydrogen energy conversion by two-fold and at half the cost.

Regarding the first research project, Professor He and his research team have developed a lightweight wave-energy-driven electrochemical carbon dioxide reduction system that can capture ocean wave energy, and convert it into formic acid, a liquid fuel.

The system features three components: a spherical spring-assisted triboelectric nanogenerator (TENG) that can convert the mechanical energy of the wave into electricity; a power management circuit with a supercapacitor to temporarily store the harvested energy; and an electrochemical setup that can reduce carbon dioxide to formic acid.

Unlike conventional wave energy converters based on electromagnetic generators, the lightweight TENG, which can float on water surface and causes minimal impact to marine life and the sea floor, is more cost-effective and able to survive storms,” Professor He said.

A liquid fuel, in the form of formic acid, is favourable because it can be stored at room temperature and is relatively easy and safe to transport. More importantly, this technology can mitigate CO2, a major greenhouse gas, during the energy conversion process, and ultimately help combat climate change,” Professor He added.

The research team found that the new technology can achieve a higher wave energy conversion efficiency and power output than conventional converters. “In the long run, we hope to boost the efficiency of TENG to reduce our reliance on fossil fuels,” Professor He said.

The findings were published in Energy & Environmental Science under the title “Blue energy fuels: converting ocean wave energy to carbon-based liquid fuels via CO2 reduction”.

To explore the full power of renewable energy, Professor He has worked with another research team in developing a new photoelectrochemical (PEC) system that can increase the efficiency of solar-to-hydrogen (STH) conversion from 3% to 9%. Its stability increased sharply from a few minutes to over 150 hours, a record high among conventional technologies.

These findings were published in Nature Communications under the title “An efficient and stable photoelectrochemical system with 9% solar-to-hydrogen conversion efficiency via InGaP/GaAs double junction”. 

Also known as artificial photosynthesis, a PEC system uses sunlight and specialised semiconductors to split water into hydrogen and oxygen.

Professor He pointed out that almost all existing PEC systems (e.g., Si and III-Vs) operated with a single-sided device, which creates a trade-off between functionality and surface protection. Most devices would fail within a few minutes because of semiconductor corrosion during water splitting. The instability and high cost of conventional technologies hinder their practical applications.

The new system developed by our research adopts an epitaxial lift-off and transfer technique that enables the utilisation of both sides of the device and the recycling of substrate. It greatly improves the system’s stability and lifetime, and halves the cost of the device, making a cost-effective PEC device within reach,” he said.  

The research team has also demonstrated the first fully integrated standalone wireless III-V-based PEC device, which is a kind of artificial leaf that can conduct energy conversion without electrical connections, with an STH efficiency of 6%.

I believe this breakthrough could minimise the geographical constraints for future research,” Professor He added.

 

Note to editors 

File name: Photo 1
Caption: Professor He and his research teams are advancing the frontiers of renewable energy research.

File name: Photo 2
Caption: The new wave-energy-device can achieve a high wave energy conversion efficiency.

File name: Photo 3
This new artificial leaf can conduct energy conversion without any electrical connections.

Media enquiries: Bobo Lo, CityU Communications and Public Relations Office (Tel: 3442 6304 or 5519 4463, email: bobo.lo@cityu.edu.hk)  

To download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
扶风县| 保时捷娱乐城| 摩纳哥百家乐官网娱乐城| 百家乐官网浴盆博彩通排名| 百家乐ag厅投注限额| 德州扑克秘籍| 赌场百家乐官网的玩法技巧和规则| 赌博百家乐技术| 大发888游戏平台hplsj| 百家乐官网赌场博彩赌场网| 保单机百家乐破解方法| 百家乐社区| 筹码百家乐官网500| 百家乐路书| 百家乐官网免费改单| 全讯网信息| ea百家乐官网打水| 环球百家乐的玩法技巧和规则| 赌博百家乐官网经验网| 澳门百家乐娱乐场开户注册| 清涧县| 金字塔百家乐的玩法技巧和规则| 手机bet365| 澳门百家乐21点| 88娱乐城官方网站| 逍遥坊百家乐的玩法技巧和规则| 玩百家乐官网免费| TT娱乐城娱乐,| 百家乐官网平游戏| 马牌百家乐官网娱乐城| 足球现金网开户| 评测百家乐博彩网站| 大集汇百家乐官网的玩法技巧和规则 | 百家乐官网最佳投注办法| 大发888真钱游戏娱乐城下载| 新濠百家乐官网娱乐场| 哪个百家乐官网技巧平台信誉好| 百家乐长胜攻略| 百家乐官网送现金| 网络百家乐官网最安全| 新太阳城娱乐|