百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough in making solar cells more efficient, scalable, and ‘green’

 

A research team led by scientists at City University of Hong Kong (CityU) has discovered an exciting new way to make solar power more effective and more environmentally friendly.

The breakthrough concerns the use of a new metal-organic framework that not only improves operational stability but also contains the lead that can potentially leak from perovskite solar cells.

While it is well known that solar power has registered significant growth as a reliable source of renewable energy in recent years, and that the power conversion efficiency registered for organic-inorganic lead halide perovskite solar cells (PVSCs) is growing higher than that of silicon solar cells, the increased production and use of PVSCs can be harmful to the environment due to lead leakage.

The CityU research team has come up with a possible long-term solution. A ground-breaking 2D conjugated metal-organic framework (2D MOF), which involved a year-long experiment, could be applied to modern PVSCs, making way for a commercially viable, large-scale deployment of the technology.

Professor Alex Jen Kwan-yue, Provost and Chair Professor of Chemistry and Materials Science, said the research outcomes suggested improved sustainability, good operational stability and enhanced power conversion efficiency (PCE).

The production of PVSCs involves the application of layers of different materials, with the new MOF the last layer to be applied. This new layer is the focus for making the solar cells less harmful.

“The new functionalised MOF can capture toxic lead ions that could leak over time because of device degradation. The captured lead ions will form an insoluble substance that is not a contaminating agent,” Professor Jen said.

In addition, experiments under accelerated testing conditions have revealed the excellent thermal stability and good performance of PVSCs after prolonged exposure to external elements in controlled conditions.

But the newly developed MOF is more than a protective layer. It is a multi-functional material that acts as an active electron-extraction layer at the perovskite/cathode interface, allowing the layer to play a contributory role in converting sunlight into electricity.

“Most of the existing protective layers used in the PVSCs do not come with the characteristics of a semiconductor, therefore playing little role in raising efficiency,” said Professor Xu Zhengtao of the Department of Chemistry (CHEM), adding that the newly discovered characteristics of the MOF were an efficient charge-transporting layer.

One of the reasons for the high PCE of the new MOF is the elevated fill factor, resulting from enhanced electron extraction capability derived from the newly experimented component.

“The multi-layer construction of PVSCs implies certainty related to charge loss between layers,” explained Dr Zhu Zonglong, Assistant Professor in CHEM and in the Department of Materials Science and Engineering (MSE). “The square shape of the current-voltage curve ensures the best possible known fill factor to feature an elevated PCE compared to existing systems.”

The breakthrough research titled “2D Metal-Organic Framework for Stable Perovskite Solar Cells with Minimized Lead Leakage” has been published in the coveted scientific journal Nature Nanotechnology.

The other contributors to the project were Wu Shengfan, first author and PhD student in CHEM, and researchers from CHEM and MSE, Xi'an Jiaotong University, University of Washington, and University of California-Irvine.

 

Notes to editors: 

Filename: photo_1
Caption: Key members of the research team: (from left) Wu Shengfan, Professor Xu Zhengtao, Professor Alex Jen Kwan-yue, and Dr Zhu Zonglong.

Filename: photo_2
Caption: A researcher tests the function of the solar cells inside the glove box.

Media enquiries: Eva Choy (Tel: 3442 9325 or 9787 7671), CityU Communications and Public Relations Office

To download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
大发888官方下| 爱拼百家乐现金网| 皇冠网网址| 娱乐城送白菜| 浙江省| 百家乐官网园36bol在线| 24山向阴阳图| 大发888设置| 娱乐百家乐官网的玩法技巧和规则 | 百家乐官网博彩通网| 百家乐电脑赌博| 网络百家乐游赌博| 娱乐城注册送| 百家乐荷官培训| 百家乐官网投注怎么样| 大发888游戏币| 属羊的和属猪的做生意| 威尼斯人娱乐城导航网| 大发888真钱游戏娱乐城下载| 任我赢百家乐官网自动投注系统 | 百家乐官网娱乐网址| 百家乐哪条路准| 至尊百家乐官网facebook| 大发888娱乐城范本| 百家乐官网象棋赌博| 属猪的做生意门朝向| 龙南县| 太阳城ktv团购| 盛世国际投注| 有24天星名的罗盘| 百家乐官网技巧心得| 456棋牌游戏| 做生意的摆件| 网上投注| 世界十大博彩公司| 百家乐数据程序| 永川市| 七胜百家乐赌场娱乐网规则| 百家乐官网网上公式| 百家乐赌博破解| 战神百家乐官网的玩法技巧和规则|