百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Breakthrough research heralds a new diamond age

 

The research results show that microfabricated single-crystalline diamond tensile sample can attain a maximum uniform elastic strain of up to 9.7%, which is close to the theoretical elastic deformation limit of diamond.

The groundbreaking research was co-led by Dr Lu Yang, Associate Professor in the Department of Mechanical Engineering (MNE) at CityU, in collaboration with experts from Massachusetts Institute of Technology (MIT), Harbin Institute of Technology (HIT) and so on. Their findings have just been published in the prestigious scientific journal Science, titled “Achieving large uniform tensile elasticity in microfabricated diamond”.

With its ultrahigh thermal conductivity and exceptional carrier mobility, diamond is not only the hardest material in nature, but also a promising electronic material which can tolerate high power and high frequency applications. 

However, one obstacle hampering the development of diamond-based electronic and optoelectronic devices is the “doping” challenge caused by the ultra-wide bandgap and its small lattice parameter. Dr Lu’s team was determined to resolve this alternatively by applying elastic lattice strain to control and change the electronic property of diamonds through a mechanical way. 

 “We microfabricated single-crystalline diamond into bridge-like structures from a solid piece of diamond crystal with a well-defined crystalline orientation, and achieved sample-wide large uniform strains under our tensile platform,” said Dr Lu. “We also show that in the process of uniaxial tensile straining, the change in the crystal structure of diamond will reduce its electronic bandgap, making its application in electronic device possible.”

In 2018, Dr Lu and collaborators had revealed for the first time that diamond nanoneedles could undergo ultralarge and fully reversible bending deformation. However, those samples were difficult to control and the resulting strain field was highly localised, which was not ideal for practical device application. This time, their team has developed advanced microfabrication processes for bulk diamond crystals in obtaining well-defined diamond bridge samples. 

Experiment results found that diamond bridges of about 1 micrometer length and 100 nanometer thickness can sustain a highly uniform elastic strain distribution of about 7.5% across the sample, as characterised by Dr. Lu’s tailor-made nanomechanical tensile platform in a controllable manner. 

By further optimising the sample geometry according to the American Society for Testing and Materials (ASTM) standard, the team demonstrated that some bridge sample achieved a maximum tensile strain of up to 9.7%. “It surpasses the local maximum strain value in our 2018 research,” said Dr Lu.

To assess the impact of such large elastic strains on the electronic property of diamond, the research team performed theoretical calculations according to the applied tensile strains in experiments and found that the bandgap of diamond generally decreases as the tensile strain increases, with the largest bandgap reduction rate down from about 5 eV (electron volt) to 3 eV at about 9% strain along a certain crystallographic orientation, which would greatly facilitate diamond’s electronics applications and boost the device performance. 

To demonstrate the concept of strained diamond device, the team successfully microfabricated diamond array samples with multiple bridges, and realised the large, uniform, reversible straining of diamond bridge arrays.

“I believed that we are entering a new diamond age, and I hope in the near future we will be able to apply strained diamonds in the production of electronic devices,” said Dr Lu. 

Dr Lu, Dr Alice Hu who is also from MNE at CityU, and Professor Li Ju from MIT, as well as Professor Zhu Jiaqi from HIT, are the corresponding authors of the paper. The co-first authors are The co-first authors are Dang Chaoqun, PhD graduate, and Dr Chou Jyh-Pin, former postdoctoral fellow from MNE at CityU, Dr Dai Bing from HIT, and Chou Chang-Ti from National Chiao Tung University. The other researchers from CityU are Dr Fan Rong and Lin Weitong. Other collaborating researchers are from Lawrence Berkeley National Laboratory, and Southern University of Science and Technology.

The research was funded by the Hong Kong Research Grants Council and National Natural Science Foundation of China.

Media enquiries: 
Kenix Wong, CityU Communications and Public Relations Office (Tel: 3442 5228/ 9753 9505) 
 

YOU MAY BE INTERESTED

Back to top
襄樊市| 大发888官网下载 官方| 百家乐官网长胜攻略| 云鼎百家乐作弊| 澳门百家乐官网技巧| 百家乐官网视频麻将游戏| 百家乐是骗人吗| 走地| 带百家乐的时时彩平台| 百家乐官网历史路单| 网络百家乐官网金海岸破解软件| 太阳城娱乐小郭| 武鸣县| 太阳城百家乐分析解码| 百家乐官网玩法有技巧| 百家乐统计工具| 百家乐官网桌布动物| 游艇会娱乐城| 太阳城百家乐怎么出千| 单机百家乐官网在线小游戏| 太阳城娱乐城备用网址| 安桌百家乐游戏百家乐| 百家乐官网赌博软件下载| 东方太阳城二手房| 百家乐官网在线娱乐可信吗| 顶旺亚洲| 澳门百家乐必杀技| 百家乐官网怎么计算概率| 棋牌58w| 注册百家乐送彩金 | 大众百家乐娱乐城| 百家乐官网娱乐城新闻| 在线水果机游戏| 巴黎人百家乐官网的玩法技巧和规则 | 皇博| 钱隆百家乐分析| 百家乐官网软件代理| 太阳会百家乐官网现金网| 网上娱乐城注册送彩金| 百家乐缩水| 先锋百家乐的玩法技巧和规则|