百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Artificial visual system with record-low energy consumption for the next generation of AI

 

The energy consumption of a new artificial visual system developed through joint research led by City University of Hong Kong (CityU) can be reduced by over 90% per synaptic event when compared to synapses in the human brain. 

The new system’s low energy usage will be a boon to the next generation of artificial intelligence (AI), helping to perform data-intensive cognitive tasks as effectively as the human brain. 

The findings of the research team led by Professor Johnny Ho Chung-yin, Associate Head in the Department of Materials Science and Engineering (MSE) at CityU, have been published in Science Advances titled “Artificial visual system enabled by quasi-two-dimensional electron gases in oxide superlattice nanowires”.

Scientists have been trying to develop AI computers that can be as light, energy-efficient and adaptable as the human brain. Communication between neurons occurs at tiny gaps called synapses in the human brain. An artificial synapse mimics the brain's efficient neural signal transmission and memory formation process.

“Unfortunately, effectively emulating the brain’s function of neural network connections in existing artificial synapses through an ultralow-power manner is still challenging,” said Professor Ho.

To enhance the energy efficiency of artificial synapses, Professor Ho’s research team has introduced quasi-two-dimensional electron gases (quasi-2DEGs) into artificial neuromorphic systems for the first time. 

The team has designed quasi-2DEG photonic synaptic devices using their newly developed oxide superlattice nanowires, a kind of semiconductor that allows the electrons to move freely in the superlattice interface.

These devices can achieve record-low energy consumption, down to sub-femtojoule (0.7fJ) per synaptic event. This translates as a decrease of 93% in energy consumption when compared with synapses in the human brain. 

Upon exposure to light pulse, a series of reactions between the oxygen molecules in the environment and free electrons inside the oxide superlattice nanowires was induced, changing the conductance of the photonic synapses and resembling that seen in the biological synapse. Hence the quasi-2DEG photonic synapses can mimic how the neurons in the human brain transmit and memorise signals.

“The special properties of the superlattice nanowire materials enable our synapses to have both photo-detecting and memory functions simultaneously. Our device can save energy as there is no need to construct additional memory modules for charge storage in an image sensing chip,” explained Professor Ho.

This artificial visual system could accurately and efficiently detect a patterned light stimulus and “memorise” the shape of the stimuli for as long as an hour. “It is just like how our brain remembers what we see for some time,” said Professor Ho.

He adds: “Our experiments have demonstrated that the artificial visual system with our photonic synapses could simultaneously perform light detection, brain-like processing and memory functions in an ultralow-power manner. We believe our findings can provide a promising strategy to develop bionic devices, electronic eyes, and multifunctional robotics in the future.” 

The synthesis of the photonic synapses and the artificial visual system does not require complex equipment, either. The devices can be made using flexible plastics in a scalable and low-cost manner.

Professor Ho is the corresponding author of the paper. The co-first authors are Meng You and Li Fangzhou, PhD students from MSE. Other team members include Dr Bu Xiuming, Dr Yip Sen-po, Kang Xiaolin, Wei Renjie, Li Dapan and Wang Fei, all from CityU. Other collaborating researchers come from the University of Electronic Science and Technology of China, Kyushu University, and the University of Tokyo.

The study received funding support from CityU, the Research Grants Council of Hong Kong SAR, the National Natural Science Foundation of China, and the Science, Technology and Innovation Commission of Shenzhen Municipality.

Notes to editors: 

File name: Photo_01
Photo caption: Professor Ho looks at a chip implanted with his new superlattice nanowires.

File name: Photo_02
Photo caption: The quasi-2DEG photonic synapse device can be made using flexible polyimide substrate.

Media enquiries: Pinky Choi, Communications and Public Relations Office, CityU 
(Tel: 3442 9322 or 9712 1795)
 

To download photo -- (Remark: Copyrights belong to CityU. Use of the photo(s) for purposes other than reporting the captioned news story is restricted.)

YOU MAY BE INTERESTED

Back to top
大发888资讯网007| 百家乐官网投注外挂| 百家乐赢家电子书| 百家乐英皇娱乐场| 大发888娱乐城下| 百家乐官网网上赌博| 百家乐梅花图标| 大发888心得| 百家乐官网技巧技巧| 威尼斯人娱乐城易博lm0| 百家乐官网有无规律可循| 百家乐群1188999| bet365娱乐城| 太阳城百家乐官网杀猪吗| 大发888游戏出纳| 百家乐官网的路图片| 百家乐是怎么赌法| 阳城县| 狮威百家乐官网娱乐场| 威尼斯人娱乐城注册网址| 百家乐官网返点| 八大胜百家乐娱乐城| 百家乐官网百博亚洲| 衢州星空棋牌下载| 百家乐官网任你博娱乐场开户注册 | 百家乐官网信誉好的平台| 尊博国际| 全讯网体育| 百家乐ag厅投注限额| 网上百家乐官网追杀| 百家乐任你博娱乐场| 百家乐官网庄闲比| 大发888怎么注册| 下三元八运24山详解| 打百家乐的技术| 百家乐官网二号博彩正网| 百家乐视频游戏大厅| 百家乐官网是骗人的么| 大发888开户注册网站| 澳门百家乐的赢钱不倒翁| 正品百家乐官网地址|