百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Discovering the Neural Mechanisms Between Chronic Pain and Cognitive Deficits

 

While the clinical connection between chronic pain and increases in levels of anxiety, depression, cognitive dysfunction has long been established, the underlying mechanisms of brain neural networks remain less understood. Professor Li Ying, Chair Professor in the Department of Neuroscience and Department of Biomedical Sciences, has achieved breakthroughs by unveiling the secrets of brain molecules and tissue – astrocytes and myelin – in the central nervous system. By identifying the roles of astrocyte lactate signalling and myelin plasticity in circuitry synchrony, he has shed light on how fundamental cognitive functions, including learning, memory and decision-making, could be rescued and enhanced, especially for patients suffering from chronic pain.

Rat
Having developed dynamic schema-like memory consolidation, it only took the rat one training session to find the correct food location from the sand well.

 

Astrocytes, which are star-shaped glial cells in the anterior cingulate cortex (ACC), are crucial in influencing neuronal functions. Professor Li and his team found that during synaptic activity (when an electrical or chemical signal is passed from one neuron to another or to a target effector cell), astrocytes release a substance called L-lactate, which is utilised by neurons to promote information flow and synchrony in the brain neural circuitry, thereby improving decision-making performance. 

L-lactate: a signalling molecule to improve decision-making

Recently L-lactate has been recognised as an important fuel for many cells. But Professor Li’s study found another essential role: as a signalling molecule in neuronal activity plasticity and neuronal network synchrony in the brain.

Using the previously established “chronic visceral pain rat model”, the research team found that L-lactate infusion into the ACC increased the proportion of good decisions by normal rats by up to 48% and significantly relieved decision-making dysfunction in rats with chronic visceral pain. The animal experiments support the idea of an “astrocyte-to-neuron L-lactate shuttle”, which means that the exogenous administration of L-lactate or optogenetic activation of astrocytes can stimulate astrocytes in abnormal neural circuitry and may help alleviate cognitive deficits caused by chronic pain.

Apart from investigating the pathological mechanisms of pain-related brain disorders for years, Professor Li was also the first to decipher the critical role of myelin in advanced cognitive memory and how its growth and regeneration can be fostered to enhance the synchrony of neural networks and improve cognitive functions.

The critical role of myelin in cognitive functions

Myelin, or myelin sheath, a multi-layered fatty tissue wrapped around neuronal axons, insulates and protects neurons, and increases the rate at which information is passed along the axons. Its formation is controlled by oligodendrocytes, which are large glial cells in the central nervous system.  

The team discovered that schema-like learning, which is learning through repetition, can foster the growth of brain myelin. Memory schemas have been introduced to cognitive psychology to understand how new information is integrated with pre-existing knowledge. So the team applied schema-like learning to design the study of behaviour in rats.

In weeks of training, the rats learned multiple types of flavour-place paired association, so that they could remember which kind of food was hidden in which sand well. After training, when the rats smelled a certain kind of food, they could quickly go to the correct sand well and dig it out, showing that they had developed dynamic schema-like memory consolidation and retrieval. When the rats were introduced with two new flavour-place pairs, it only took them one training session to find the correct food location, indicating that the integration of new information into established knowledge progressed very rapidly.

By analysing the changes in the rats’ brains with immunohistochemistry and a transmission electron microscope, the researchers found that the myelin of the ACC of the trained rats had grown substantially in the process of learning and developing memory schema.  

In addition, the team reversely demonstrated the importance of myelin in enhancing learning and memory capacity by interrupting its growth.

By injecting drugs for demyelination in rats, they concluded that the interference of myelin formation can severely disrupt the creation of memory schemas and new memories. The transmission of information within neural circuits and the synchrony of neural networks are negatively affected as well. They also found that myelination is a key factor in facilitating long-range oscillations and synchronisation of spike time arrival between neurons in different brain areas.

“With the use of cutting-edge optogenetic, chemogenetic and pharmacological technologies, we can precisely control brain oligodendrocytes to promote myelin formation,” said Professor Li. “We will explore whether these methods can improve severe cognitive impairment caused by central myelin diseases such as severe depression, chronic recurrent pain, irritable bowel syndrome, and Alzheimer's disease.” 

He and his team will continue to investigate neural network synchronisation to identify the causality of chronic pain and associated cognitive deficits, which will lay the groundwork for developing effective treatment and prevention strategies. 

Prof Li
Professor Li Ying

 

“Neuroscience is a complex discipline, which covers a broad base of life sciences and is related to other disciplines, such as physics and information technology. So we should expand our knowledge in all these fields. There is also a crucial connection between philosophy and cognitive science. The driving forces of hypotheses and advanced biotechnologies should be used in concert to explore the beauty of the philosophy of mind and cognition.”

This research article originated from CityU RESEARCH.

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
代理百家乐官网最多占成| 中国百家乐技巧软件| 百家乐官网天上人间| 英皇百家乐官网的玩法技巧和规则| 万达百家乐娱乐城| 百家乐官网跟路技巧| 百家乐玩法说| 申博百家乐官网下载| 百家乐稳赢投资法| CEO百家乐官网现金网| 海立方百家乐的玩法技巧和规则| 德州扑克读牌| E利博娱乐城| 百家乐投注之对冲投注| 荥阳市| 黄金城百家乐官网安卓版| 晓游棋牌官方下载| 太阳城百家乐的分数| 乐九百家乐官网游戏| 皇马百家乐官网的玩法技巧和规则 | 大发888玩哪个能赢钱| 德州扑克中文版| 百家乐娱乐城主页| 真人百家乐视频赌博| 赌场百家乐官网玩法介绍| 澳门顶级赌场娱乐场| 真人百家乐大转轮| 百家乐官网百博亚洲| 乐亭县| 中国百家乐技巧软件| 百家乐官网怎么赢对子| 大发888黄金版网址| 求购百家乐程序| 百家乐官网是如何骗人的| 波克棋牌斗地主| 幸运水果机游戏| 现金百家乐人气最高| 百家乐官网补牌规律| 大发888真钱娱乐城| 百家乐7scs娱乐平台| 澳门百家乐投注法|