百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

A Novel nanophotonic system enhances light conversion efficiency by over 100-times

 

Efficient frequency up-conversion of light is highly demanded for a variety of photonic applications, such as imaging and sensing, but it remains challenging in nanophotonics and nanoscale optics. A breakthrough has been made in enhancing second-harmonic generation (SHG) efficiency by over 100-times from a novel nanoscale optical resonator, according to a collaborative study by researchers at City University of Hong Kong (CityU) and from UK. The team developed a new strategy for achieving highly efficient nonlinear light conversion, which can help manufacture nonlinear nanophotonic devices for high-resolution imaging and sensing of biological objects, ultrafast on-chip optical switches and quantum photonic technologies.

The research was jointly led by Dr Lei Dangyuan, Associate Professor of the Department of Materials Science and Engineering (MSE) at CityU and Professor Anatoly Zayats from King’s College London (KCL). The findings were published in the academic journal Nature Communications under the title “Light-induced symmetry breaking for enhancing second-harmonic generation from an ultrathin plasmonic nanocavity”.

Second-harmonic generation is a coherent three-wave mixing process in which the nonlinear optical materials absorb two photons with the same frequency (ω), and subsequently give rise to a third photon at exactly twice the absorption frequency (2ω). Due to the weak optical nonlinearity of common materials, such a coherent process usually occurs under strong laser pumping conditions.  

In general, the second-harmonic generation has higher frequency conversion efficiency than other nonlinear optical processes, and is the most widely used. Second-harmonic generation is commonly used in fields like laser frequency conversion, high-resolution optical microscopy, biological and medical detection.

In the short wavelength range where the metal absorption is more significant, the plasmonic resonance effect is relatively weak. Since second-harmonic generation happens to be in this wavelength, it is difficult to be boosted via field enhancement induced by surface plasmon resonance.

The joint research team has overcome this challenge by building a nanostructured plasmonic system. The system exhibited exceptionally strong second-harmonic generation in the ultraviolet-visible spectral range, even in the absence of a surface plasmon resonance at the second-harmonic frequency.

enhances light conversion efficiency
The illustration of a strong electromagnetic field generated at the contact point between the gold nanosphere and the gold film in the team’s system. (DOI number: 10.1038/s41467-021-24408-x)

Overcoming the lack of surface plasmon resonance

enhances light conversion efficiency
Schematic of placing a gold nanosphere on the film and the purple part is the emission of second-harmonic generated. (DOI number: 10.1038/s41467-021-24408-x)

Firstly, the team manufactured a gold nanosphere of about 100nm in diameter and placed it on top of a gold film with silicon dioxide substrate underneath, to form a particle-on-film construct, which can generate strong electromagnetic asymmetry. As long as the gold nanosphere is closely attached to the film, the system would demonstrate strong second-harmonic generation, even in the absence of a surface plasmon resonance at the second-harmonic frequency.

The team named the system a virtual nanoparticle dimer (VND), which can be considered an analogue of a real nanoparticle dimer (RND) consisting of two identical gold nanospheres.

Three conditions for generating second-harmonic efficiently

Such a VND has an important hidden electromagnetic asymmetry induced at the second-harmonic frequency, resulting in the required three criteria favourable for efficient second-harmonic emission: (1) a gap plasmon resonance occurring at the fundamental excitation frequency;

(2) the electromagnetic asymmetry at the second-harmonic frequency significantly suppresses the destructive interference of locally generated second-harmonic light;

(3) related second-harmonic couples to a bright, vertical bonding dipole mode, making the system as a nanogap-based optical nano-antenna that efficiently radiates second-harmonic light into the far-field.

enhances light conversion efficiency
The team performed nonlinear confocal scanning measurements on the structure of both VND and RND, and found that VND exhibited substantially brighter second-harmonic emission spots than the RND. (DOI number: 10.1038/s41467-021-24408-x)

 

The team performed nonlinear confocal scanning measurements on the structure of both VND and RND, and found that VND, the team's newly designed structure, exhibited substantially brighter second-harmonic emission spots than the RND.

Under the same excitation condition, it is discovered that the second-harmonic intensity from a single VND is more than 13-fold higher than that from an RND with weak asymmetry. Moreover, compared with the complex double resonance plasmonic nanostructure, with only one gold nanosphere with a diameter of about 100nm, the new system can already enhance the conversion efficiency of the far-field second-harmonic generation by more than 100 times.

Facilitating the fabrication of nonlinear nanophotonic devices

In addition to the near-field enhancement of second-harmonic generation, Dr Lei pointed out that the proposed plasmonic system can also generate efficient far-field radiation of it, rendering a bright nonlinear light source at the nanoscale.

“We anticipate that the design strategy developed by our team can be generalised to other nonlinear nanomaterials featuring axis or inversion symmetry for highly efficient light conversion without the need of plasmon resonances at second-harmonic emission frequencies,” concluded Dr Lei.

The team hoped that ultimately they can produce nonlinear nanophotonic devices to provide bright nanoscale light sources for applications in quantum photonic technologies, high-resolution imaging and sensing of biological objects, and ultrafast on-chip optical switches.

The corresponding authors of this paper are Dr Lei and Professor Anatoly Zayats from King’s College London. The first author is Dr Li Guangcan, a visiting scholar from CityU’s MSE, now a Research Fellow at the School of Information and Optoelectronic Science and Engineering, South China Normal University. Other collaborating researchers are from South China Normal University and The Hong Kong Polytechnic University.

Dr Lei
Dr Lei Dangyuan, Associate Professor of the Department of Materials Science and Engineering at CityU.
Dr Li Guangcan
Dr Li Guangcan, a visiting scholar from CityU’s Department of Materials Science and Engineering.

This work was supported by the Research Grants Council of Hong Kong, the Engineering and Physical Sciences Research Council (EPSRC, UK), the European Research Council, the National Natural and Science Foundation of China, and the China Postdoctoral Science Foundation.

DOI number: 10.1038/s41467-021-24408-x

Newsletter Subscription: Research 

* indicates required

Areas of Interest 

Contact Information

Back to top
bet365备用| 百家乐娱乐城官方网| 澳门百家乐官网游戏皇冠网| 百家乐官网龙虎斗扎金花| 钱百家乐官网取胜三步曲| 优惠搏百家乐官网的玩法技巧和规则| 大发888大发888体育| 板桥市| 百家乐视频桌球| 大发888最新版本下载| 真人百家乐官网是啥游戏| 免费百家乐官网统计工具| 韩城市| 威尼斯人娱乐最新地址| 百家乐官网庄闲分布概率| 百家乐的分析| 百家乐官网投注玩多少钱| 百家乐园游戏庄闲| 博久百家乐官网论坛| 做生意门朝东好吗| 德州扑克保险| 百家乐赌博彩| 欧洲百家乐官网的玩法技巧和规则 | 玩百家乐输澳门百家乐现场| 大赢家即时比分网| 百家乐官网出千工具价格| 百家乐系统足球博彩通| 百家乐官网投注翻倍方法| 大发888官网客服| 姚记百家乐官网的玩法技巧和规则| 大发888资讯网net| 旧金山百家乐官网的玩法技巧和规则| 百家乐平注法口诀技巧| 百家乐官网怎么玩| 百家乐官网赌机凤凰软件| 大发888蜜月旅行| 百家乐娱乐代理| 鑫鼎百家乐官网的玩法技巧和规则| 娱乐城官网| 大发888博彩娱乐城| 圣保罗百家乐的玩法技巧和规则 |