百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Research Stories

Showing 11 to 20 of 272 results
CityUHK creates novel metallic glass with dual-high strength and ductility
City University of Hong Kong (CityUHK) has recently developed a new multi-principal element metallic glass that shatters previous limitations of tensile ductility. This novel glass is twice as ductile as traditional metallic glasses, and its strength nearly doubles when stretched. The key to this extraordinary property lies in the unique structural evolution of the glass during deformation, which causes it to harden rather than soften, making it significantly more resistant to sudden breakage under tension. The findings surpass limitations of tensile ductility in metallic glasses and provide a promising pathway to create strong and ductile glasses.
Hydromechanical strategy for aligned 2D material growth
Van der Waals (vdW) dielectrics are widely used in nanoelectronics to preserve the intrinsic properties of two-dimensional (2D) semiconductors. However, achieving aligned growth of 2D semiconductors and their direct utilization on original vdWs epitaxial dielectrics to avoid disorders poses significant challenges. To overcome these challenges, researchers from the City University of Hong Kong (CityUHK) developed a hydromechanical strategy for aligned 2D material synthesis, pushing forward high-performance devices with as-grown 2D materials/vdWs dielectrics.
Low-Temperature Pulse Irradiation Technique Enables Flexible Optoelectronic Devices
The synthesis of metallic inorganic compound thin films typically requires high-temperature processes, which hampers their applications on flexible substrates. Recently, a research team at City University of Hong Kong (CityUHK) developed a pulse irradiation technique that synthesizes a variety of thin films in an extremely short time under ultra-low temperature. The strategy effectively addresses the compatibility and cost issues of traditional high-temperature synthesis, and the prepared thermoelectric films exhibit excellent optoelectronic performance in the visible and near-infrared spectrum range, which is promising for wearable electronics and integrated optoelectronic circuits.
CityUHK researchers develop mask-inspired perovskite smart windows to enhance weather resistance and energy efficiency
Thermochromic perovskite is a new color switch material used in energy-saving smart windows. Despite its potential for energy savings, thermochromic perovskite suffers from poor weather resistance, susceptibility to water damage, and high optical haze, limiting its practical application. To overcome these challenges, researchers from City University of Hong Kong (CityUHK) developed a breathable, weather-resistant, low-haze perovskite smart window inspired by medical masks, pushing forward the wide applications of smart windows in green buildings.
Unravelling the fascinating behavior of water and ice in extreme conditions
Understanding water behavior in nanopores is crucial for both science and practical applications. Scientists from City University of Hong Kong (CityU) have revealed the remarkable behavior of water and ice under high pressure and temperature , and strong confinement. These findings, which defy the normal behavior observed in daily life, hold immense potential for advancing our understanding of water's unusual properties in extreme environments, such as in the core of distant ice planets. The implications of this major scientific advancement span various fields, including planetary science, energy science, and nanofluidic engineering.
Efficient bifunctional catalyst enables high-performance zinc-nitrate / ethanol batteries for sustainable energy storage
Zinc-nitrate batteries are a primary non-rechargeable energy storage system that utilizes the redox potential difference between zinc and nitrate ions to store and release electrical energy. A research team co-led by chemists from City University of Hong Kong (CityU) have developed a high-performance rechargeable zinc-nitrate/ethanol battery by introducing an innovative catalyst. They successfully designed and synthesized an efficient tetraphenylporphyrin (tpp) modified heterophase rhodium-copper alloy metallene (RhCu M-tpp). This bifunctional catalyst exhibits remarkable capabilities in both the electrocatalytic nitrate reduction reaction (NO3RR) and ethanol oxidation reaction (EOR) in a neutral medium, overcoming the monofunctional limitations of traditional metal-based solid catalysts and providing a valuable reference for the design of sustainable energy storage in the future.
3
G-quadruplexes (G4), which are special structures in DNA and RNA that play a crucial role in cells, have been associated with cancers and neurological diseases. A research team from City University of Hong Kong (CityU) recently built a new platform to select L-RNA aptamers that can target functional G4 structures. They found an L-RNA aptamer called L-Apt12-6 that binds specifically to a specific topology of G4 structure: parallel G4. The findings may be beneficial for developing new drugs and treatments for G4-related diseases, like cancers.
3
A research team from City University of Hong Kong (CityU) recently successfully achieved lattice-mismatch-free construction of III-V/chalcogenide core-shell heterostructure nanowires for electronic and optoelectronic applications. This breakthrough addresses crucial technological challenges related to the lattice mismatch problem in the growth of high-quality heterostructure semiconductors, leading to enhanced carrier transport and photoelectric properties.
CityU neuroscientists unveil the novel therapeutic potential of Metaxalone for treating nerve injuries
Traumatic injuries to the peripheral nervous system are a leading cause of disability, especially patients with proximal peripheral nerve injury. It’s hard to regenerate and regain normal function in a short period, and it often leads to sensory and motor dysfunction, which greatly affects the patient’s quality of life. Recently, a research team led by City University of Hong Kong (CityU) neuroscientists found that metaxalone treatment accelerates nerve repair and function recovery comparable to immediate treatment, offering a highly relevant clinical strategy.
1
Downscaling of electronic devices, such as transistors, has reached a plateau, posing challenges for semiconductor fabrication. However, a research team led by materials scientists from City University of Hong Kong (CityU) recently discovered a new strategy for developing highly versatile electronics with outstanding performance, using transistors made of mixed-dimensional nanowires and nanoflakes. This innovation paves the way for simplified chip circuit design, offering versatility and low power dissipation in future electronics.
Back to top
博之道百家乐官网的玩法技巧和规则| 大发888注册送50| 百家乐官网高| 黄金城百家乐苹果版| 乐都县| 博天堂百家乐官网| 博乐百家乐官网游戏| 百家乐官网打印机分析| 百盛百家乐官网的玩法技巧和规则 | 察雅县| 澳门百家乐哪家信誉最好| 大发888真钱官网| 保单百家乐官网游戏机| 百家乐赌博论坛在线| 玩百家乐官网新2娱乐城| 威尼斯人娱乐城官网地址| 百樂坊百家乐官网的玩法技巧和规则 | 菲彩百家乐的玩法技巧和规则| 大发| 百家乐哪条路准| 百家乐官网出千方法技巧| 大发888备用网| 我的做生意财位| 永亨娱乐城| 真人百家乐赌场娱乐网规则| 通城县| 爱拼百家乐的玩法技巧和规则| 稳赢的百家乐官网投注方法| 百家乐玩法开户彩公司| 金濠国际娱乐城| 百家乐vshow| 在线百家乐赌场| 酒泉市| 大发888开户注册| 温州市百家乐鞋业| 明升国际网址| 任你博百家乐官网的玩法技巧和规则| 百家乐赢多少该止赢| 首席百家乐官网的玩法技巧和规则 | 百家乐官网马渚| 全讯网168268|