百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Spin-redirection phase of sound wave demonstrated for the first time

 

Dr Wang believes his latest research finding could provide some insight for the exploration of new mechanisms to manipulate sound waves.
Dr Wang believes his latest research finding could provide some insight for the exploration of new mechanisms to manipulate sound waves.

It is well-known that sound wave carries dynamical phase during propagation. A latest research conducted by researcher from City University of Hong Kong (CityU) and his collaborators from other universities has demonstrated a new type of phase of sound: the spin-redirection geometric phase. 

The research is conducted by Dr Wang Shubo, Assistant Professor in the Department of Physics at CityU, Dr Ma Guancong, Assistant Professor in the Department of Physics at the Hong Kong Baptist University, and Professor Chan Che-ting, Chair Professor in the Department of Physics at the Hong Kong University of Science and Technology. It was published in the open-source journal Science Advances in February under the title “Topological transport of sound mediated by spin-redirection geometric phase”. 

Dr Wang explains that geometric phase, also called Berry phase, derives from the geometric structure of the parameter space. Geometric phase has been drawing more and more attention over the past few decades and has led to the discovery of topological insulators. The 2016 Nobel Prize in Physics was awarded to three researchers whose work transformed the understanding of “topological phase transition and topological phases of matter”. 

Dr Wang points out that researchers used to believe that spin-redirection geometric phase effects cannot happen in scalar waves, such as airborne sound, because scalar waves do not carry spin angular momentum. 

However, sound wave can carry orbital angular momentum (OAM), which has similar properties as the spin angular momentum. In this study, Dr Wang and his collaborators have found that when a sound vortex (i.e. vortex state of sound wave) travels along a helical path, its orbital angular momentum can give rise to the spin-redirection geometric phase

In the experiment (illustration below), they made use of a helical waveguide to manipulate the transmission path of the sound vortex. And for the first time, they demonstrated the spin-redirection geometric phase effect in airborne sound, while such an effect is absent in a normal bent waveguide.

Sound vortices were transmitted along the two tubes of same length. At the input ends, the phases of the vortices were the same. But at the output ends, there is a 1/4 phase difference which was attributed to the geometric phase.
Sound vortices were transmitted along the two tubes of same length. At the input ends, the phases of the vortices were the same. But at the output ends, there is a 1/4 phase difference which was attributed to the geometric phase.

Spin-redirection geometric phase induced by helical transport of sound vortices

(A) Sound vortices traveling through a helical waveguide acquire a geometric phase in addition to the normal dynamic phase. Such a phase can be considered as the result of the rotation of the local coordinate system (u, v, t) attached to the waveguide. (B) Band structures for a straight waveguide and a helical waveguide showing the degeneracy lifting of the q = ±1 vortices due to the coupling of the OAM and linear momentum. (C) The degeneracy lifting can be attributed to the spin-redirection geometric phase induced by the evolution of the vortex states in wave vector space.
(A) Sound vortices traveling through a helical waveguide acquire a geometric phase in addition to the normal dynamic phase. Such a phase can be considered as the result of the rotation of the local coordinate system (u, v, t) attached to the waveguide. (B) Band structures for a straight waveguide and a helical waveguide showing the degeneracy lifting of the q = ±1 vortices due to the coupling of the OAM and linear momentum. (C) The degeneracy lifting can be attributed to the spin-redirection geometric phase induced by the evolution of the vortex states in wave vector space.
Experimental demonstration of the spin-redirection geometric phase for a sound vortex. (A to C) Experimental setups for a straight waveguide, a bent waveguide, and a helical waveguide, respectively. (D to F) Magnitude and phase of the pressure field detected at the end of the waveguide corresponding to (A) to (C), respectively.
Experimental demonstration of the spin-redirection geometric phase for a sound vortex. (A to C) Experimental setups for a straight waveguide, a bent waveguide, and a helical waveguide, respectively. (D to F) Magnitude and phase of the pressure field detected at the end of the waveguide corresponding to (A) to (C), respectively.

Dr Wang says that the concept of geometric phase has revolutionized our understanding of state evolution in both classical and quantum physics. The spin-redirection geometric phase can be applied to manipulate the transport properties of sound vortices. The related mechanisms can be further explored for the development of new communication technologies. 

He explains that sound wave has been widely applied in communications, in particular underwater communications. To increase the communication bandwidth based on sound signals, researchers have been developing orbital angular momentum multiplexing technique by encoding information in the phase of sound waves. Manipulating the phase of sound vortices is crucial to achieving this technique. Therefore, he believes that this research finding could provide some insight in this regard.

聯(lián)絡(luò)資料

Back to top
百家乐官网singapore| 杨公24山属性| 百家乐官网桌出租| 澳门档百家乐官网的玩法技巧和规则 | 做生意门朝向什么方向| 盈博国际娱乐城| 真人百家乐娱乐场开户注册| 申博百家乐官网下载| 人气最高棋牌游戏| 赌博百家乐规则| 网上的百家乐官网是假的吗| 泾川县| 百家乐云顶| 百家乐官网稳赢秘笈| 黔东| 大发888网页版登陆| 百家乐群sun811| 红9百家乐官网的玩法技巧和规则| 星际博彩| 大发888官网df888esbgfwz| 百家乐真钱路怎么看| 粤港澳百家乐官网赌场娱乐网规则 | 百家乐官网游戏下裁| 德州扑克qq| 百家乐园选蒙| 如何打百家乐的玩法技巧和规则 | 3U百家乐游戏| 百家乐官网对冲套红利| 皇冠百家乐官网皇冠网| 天津太阳城橙翠园| 豪华百家乐人桌| 做生意用的 风水上最好的尺寸有| 谈谈百家乐官网赢钱技巧| 蓝山县| 联博娱乐| 大发888是什么游戏| 太子百家乐娱乐城| 大发888真钱游戏玩法| 百家乐棋牌交| 百家乐官网便利| 鸿运娱乐城|