百家乐怎么玩-澳门百家乐官网娱乐城网址_网上百家乐是不是真的_全讯网888 (中国)·官方网站

Seminar by Prof. Omar F. Mohammed on Mapping Charge Carrier Dynamics in Real-space and Time on Semiconductor Material Surfaces and Interfaces using Ultrafast Spectroscopy and Four-dimensional Electron Microscopy

Date: 21 May 2018 (Monday)

Time: 10:00 am

Venue: B5-309, Yeung Kin Man Academic Building

 

Understanding light-triggered charge carrier dynamics on photovoltaic-material surfaces and at interfaces has been a key element and one of the major challenges for the development of real-world energy devices [1-4]. We achieved the challenging task of accessing carrier dynamics selectively on material surfaces with high spatial and temporal control in a photo-induced reaction by applying four-dimensional ultrafast electron microscopy (4D UEM) along with time-resolved laser spectroscopy. The time-resolved secondary electrons provide images (snapshots) of material surfaces with 650 fs and ~4 nm temporal and spatial resolutions, respectively. In this method, the surface of the photoactive materials is excited by a clocking optical pulse and the photo-induced changes are imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons, which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. Using this method, we obtained controllable dynamical information on surface dynamics. For instance, we clearly demonstrate how the surface morphology, grains, defects and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials [5]. Moreover, we show that the energy loss and carrier spreading on the surfaces of InGaN nanowires can be achieved now in real space [6]. The time-resolved images (snapshots) clearly demonstrate that carrier recombination on the nanowires surface is significantly slowed after surface treatment, providing clear evidence of the minimization of the surface defects upon passivation, explaining clearly why the performance of optoelectronic device based on these materials is much better after surface passivation [7]. In another interesting work on quaternary copper indium gallium selenide (CIGSe) nanocrystals (commonly used in solar and optoelectronic devices), the time-resolved images from S-UEM provided by S-UEM clearly demonstrate how surface treatment with high band gap materials such as ZnS can control the overall carrier relaxation process on the surfaces of these materials [8]. Charge carrier dynamics in semiconductor quantum dots and perovskite single crystal will be also presented and discussed.

 

References

1- O. M. Bakr, O. F. Mohammed., Science 355, 1260 (2017).

2- A. O. El-Ballouli, E. Alarousu, M. Bernardi, S. M. Aly, A. P. Lagrow, O. M. Bakr, O. F.??? Mohammed., J. Am. Chem. Soc. 136, 6952 (2014).

3- R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr, and O. F. Mohammed.,J. Am. Chem. Soc. 139, 731 (2017).

4- O. F. Mohammed, D.-S. Yang, S. Pal, A. H. Zewail, J. Am. Chem. Soc. 133, 7708 (2011).

5- J. Sun, V. A. Melnikov, J. I. Khan, O. F. Mohammed, J. Phys. Chem. Lett. 6, 3884 (2015).

6- R. Bose, J. Sun, J. I. Khan, B. S. Shaheen, A. Adhikari, T. K. Ng, V. M. Burlakov, M. P. Parida, D. Priante, A. Goriely, B. S. Ooi, O. M. Bakr, O. F. Mohammed, Adv. Mater. 28, 5106 (2016).

7- J. I. Khan, A. Adhikari, J. Sun, D. Priante, R. Bose, B. S. Shaheen, T. K. Ng, O. M. Bakr, B. S. Ooi, O. F. Mohammed, Small 12, 2313 (2016).

8- R. Bose, A. Bera, M. R. Parida, A. Adhikari, B. S. Shaheen, E. Alarousu, J. Sun, T. Wu, O. M. Bakr, O. F. Mohammed, Nano Lett. 16, 4417 (2016).

 

 

 

Short Biography:

 

Prof. Omar F. Mohammed

KAUST Solar Center, Division of Physical Sciences and Engineering, KAUST, Thuwal 23955-6900, KSA

 

?Professor Mohammed is the principal investigator of ultrafast laser spectroscopy and four-dimensional electron imaging laboratory and he is affiliated with Solar and Photovoltaics Engineering Research Center at KAUST, and at present, his research activities are focused on the development of highly efficient solar cells with the aid of cutting-edge nanotechnology, laser spectroscopy, and ultrafast electron imaging. Prior to joining KAUST in December 2012, Dr. Mohammed was a senior research associate in Professor Ahmed Zewail?s group at Caltech, USA. While there, Dr. Mohammed joined the research group of Professor Zewail and worked on the development of new laser spectroscopic and time-resolved electron imaging techniques. Prior to his arrival in Pasadena, California, Dr. Mohammed spent more than a decade in Germany, Switzerland and Japan, embarking on the development of new laser spectroscopic techniques for direct observation of many chemical, physical and biological processes in real time. The accomplishments of Dr. Mohammed have resulted in more than 200 articles, invited talks and conference proceedings; and a large number of these papers are published in very high impact scientific journals including Science, Nature Materials, Advanced Materials, JACS, Nano Letters, Nature Communications, Advanced Energy Materials, Angewandte Chemie, PNAS, Chemical Communications, Advanced Functional Materials, Journal of Physical Chemistry Letters, Small and many others.

 

AWARDS

2002-2006: Long-term fellowship (4 years), Max-Born Institute, Berlin, Germany

2006-2007: Post-doctoral Fellowship, University of Geneva, Switzerland

2007-2008: Post-doctoral Fellowship (JSPS fellowship) & Special post-doctoral researcher (RIKEN?????fellowship), RIKEN, Japan

2009-2010: Distinguished scholar award from Arab Fund for Economic and Social Development

2010-2011: The State Prize in Basic Sciences, Egypt

 

PUBLICATION HIGHLIGHTS

?         116 peer-reviewed journal articles: 80 as an independent faculty, 64 as corresponding author.

?         12 Thomson Reuters? Highly Cited Papers

?         5 Thomson Reuters? Hot Papers

?         14 Front covers of the journals

?         2 ACS Editors' Choice Articles

?         49 articles in Nature Index? journals, including: 3 Science, 3 Nature Communications, 1 Nature Materials, 4 Advanced Materials, 8 Journal of the American Chemical Society, 8 Angewandte Chemie International Edition, 3 Nano Letters, 14 Journal of Physical Chemistry Letters, 2 Chemical Communications, 2 Applied Physics Letters and 1 Chemical Science).

 

 

Enquiry:

Department of Materials Science and Engineering

Email: mse@cityu.edu.hk

Tel: 3442 2985

百家乐官网娱乐平台真人娱乐平台| 利博百家乐官网的玩法技巧和规则| 百家乐官网赌的技巧| 百家乐破解的方法| 亿博国际| 百家乐2号说名书| 百家乐官网小路规则| 大发888下载地址| 最好的百家乐论坛| 百家乐官网半圆桌| 大发888手机游戏| 百家乐视频连连看| 免费百家乐官网在线| 永利百家乐娱乐网| 百家乐官网买闲打法| 坐乾向巽24山向择吉| 肇东市| 玩百家乐高手支招篇| 百家乐官网闲庄和| 沙龙娱乐开户| 钱柜百家乐娱乐城| 澳门百家乐官网| 新世纪娱乐| 大佬百家乐的玩法技巧和规则| 免费百家乐官网追号工具| 澳门百家乐官网路单怎么看| 赌博游戏网站| 大发888 软件| 百家乐网络赌博网址| 富顺县| 百家乐赌场技巧网| 加州百家乐官网的玩法技巧和规则| 百家乐官网网站新全讯网| 大发888真钱赌场娱乐网规则| 百家乐任你博赌场娱乐网规则| 金榜百家乐官网娱乐城| 大发888怎么提款| 362百家乐的玩法技巧和规则| 百家乐线上| 百家乐真人游戏开户| 做生意发财招财图像|